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Abstract: Both state-based and observer-based output feedback event-triggered controls for continuous-time switched linear
systems are studied. An improved event-triggered sampling mechanism is adopted in feedback control, under which Zeno
behaviour can be easily excluded in sampling process. Meanwhile, it is shown that the closed-loop switched system is stable in
the sense of global uniform boundedness satisfying an average dwell time condition. A numerical example is finally given to
verify the developed results.

1 Introduction
A switched system is usually composed of a family of continuous-
time or discrete-time subsystems and a switching law which
orchestrates switchings between the subsystems. The past two
decades have seen lots of research activities focusing on the study
of switched systems (see [1–11] and references therein) since many
practical systems have to be modelled as switched systems, e.g.
chemical processes, switched resistor–inductor–capacitor circuits
and intelligent transportation systems. Most of the existing
references study conventionally continuous feedback control of
switched systems which requires signals to transmit continuously
all the time. However, from a practical implementation point of
view, controller is often implemented on a digital platform.
Discrete signal transmission demonstrates its superiority due to the
lower costs and the higher transfer efficiency. Periodic sampling
and event-triggered sampling schemes are therefore used to control
physical plants (see e.g. [12–15]). Event-triggered control is a
control strategy in which control task is executed after the
occurrence of an external event. Several event-triggered control
strategies have been developed for different kinds of non-switched
control systems (see e.g. [16–26]).

Recently, periodic sampling and quantised measurements
method is developed to stabilise a switched linear control system in
[27]. Wakaiki and Yamamoto [28] proposes a stability analysis
method for periodically sampled-data switched linear systems with
finite-level static quantisers. Fu et al. [29] extends the result of
periodic sampling control to a switched linear neutral system.
Periodic sampling control is in fact time-triggered control scheme,
in which the inter-event times are constant. Fixed sampling period
can help simplify the analysis of closed-loop system and the design
of controller but may lead to a waste of computation resources
regardless of the change in system operating. Event-triggered
control can mitigate the unnecessary waste of computation
resources and communication. The authors in [30, 31] propose
event-triggered control of switched linear systems. Qi and Cao [32]
considers finite-time event-triggered H∞ control for switched
systems with time-varying delay. Ma et al. [33] proposes event-
triggered dynamic output feedback control schemes for switched
linear systems. Although event-triggered control schemes of
switched linear systems are studied in [30–33], positive lower
bounds on inter-event interval derived from them are rough. In
event-triggered control, the execution of control tasks occurs in
non-fixed period and inter-event intervals are varying. Therefore,
an infinite number of events may generate in finite time (the so
called Zeno behaviour) [34]. Zeno behaviour needs to be avoided

since it can make event-triggered control scheme infeasible for
practice implementation [14].

Motivated by the above analysis, we study event-triggered
control of continuous-time switched linear systems. The
contribution of this paper lies in twofold. (i) We adapt an improved
event-triggered control mechanism and apply it to a switched linear
control system and derive a lower bound of minimum inter-event
interval to exclude Zeno behaviour in event-triggered sampling
process. (ii) We develop both state-based and observer-based
output feedback controls for the switched control system to achieve
its global uniform boundedness condition. The material in this
paper was partially presented in a conference paper [35]. This
paper corrects mistakes and completes results on stability analysis
in [35] and further improves the structure of the paper.

The rest of the paper is organised as follows. Section 2 gives
problem statement. Sections 3 and 4 construct event-triggered
sampling mechanisms based on both system state and observer
state and give stability analysis of closed-loop switched systems,
respectively. A lower bound of the minimum inter-event interval is
derived to guarantee that there is no Zeno behaviour occurring on
event-triggered control process in Section 5. Section 6 presents a
numerical example to illustrate the advantage of the proposed
method. Finally, Section 7 concludes the whole paper.

Notations: Throughout the paper, ℝn denotes the n-dimensional
Euclidean space. ℕ denotes the set of non-negative integer
numbers. For a square matrix P, PT and P−1 denote the transpose
and the inverse of P, respectively; P > 0( < 0) means that the
matrix P is real symmetric and positive definite (real symmetric
and negative definite); λ(P) and λ̄(P) denote the minimum and the
maximum eigenvalues of matrix P, respectively. ∥ ⋅ ∥ denotes the
Euclidean vector norm. ∥ P ∥ is spectral norm of matrix P. ℬ(ε) is
the closed ball in ℝn with centre at the origin and radius ε. ∗
denotes the symmetry part of a symmetry matrix. diag{⋯} denotes
a block-diagonal matrix. The notations 0 and I denote a zero matrix
and an identity matrix of appropriate dimensions, respectively.

2 Statement of the problem
Event-triggered control system considered in this paper is shown in
Fig. 1. 

The physical plant is continuous-time switched linear system

ẋ(t) = Aσx(t) + Bσuσ(t), x(0) = x0

y(t) = Cσx(t) (1)
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where x(t) ∈ ℝn is system state, y(t) ∈ ℝq is measurable output,
σ : [0, ∞) → ℳ = {1, 2, …, m} is a switching signal that
orchestrates switching between subsystems, ℳ is a finite index set,
Ai, Bi, Ci: i ∈ ℳ are known real matrices defining individual
subsystem of system (1). ui ∈ ℝm is control input of subsystem i. It
is assumed that pairs (Ai, Bi) and (Ai, Ci) are controllable and
observable, respectively. Corresponding to the switching signal σ,
there exists a switching sequence

xt0: (l0, t0), (l1, t1), …, (li, ti), …| li ∈ ℳ, i ∈ ℕ (2)

which means that the lith subsystem is active when t ∈ [ti, ti + 1) and
ti is the switching instant. Without loss of generality, we assume
that there are no state jumps at switching instants and the solution
x( ⋅ ) of system (1) is continuous everywhere.

 
Definition 1: Let Nσ(s, t) denote the number of discontinuities

of a switching signal σ on an interval (s,t) for ∀t ≥ s ≥ 0 [2].

(1) If any two switches are separated by at least τd > 0, i.e.
Nσ(t, s) ≤ 1 when t − s ≤ τd, then τd is called a dwell time;
(2) If Nσ(t, s) ≤ N0 + ((t − s)/τa) holds for τa > τd and N0 ≥ 1, then
τa is called an average dwell time.

 
Denifition 2: Switched system (1) is uniformly bounded if for a

constant δ > 0, there exists a switching signal σ and a positive
constant β = β(δ) < ∞, which is independent of t0, such that

∥ x(t0) ∥ < δ ⇒ ∥ x(t) ∥ < β(δ), ∀t > t0 . (3)

Switched system (1) is globally uniformly bounded if (3) holds for
∀δ > 0.

 
Lemma 1: For any real vectors u, ν and symmetric positive

matrix Q with compatible dimension, the following inequality
holds:

uTν + νTu ≤ uTQu + νTQ−1ν . (4)

3 State-based event-triggered control
3.1 Sampling mechanism

We denote the instants when an event occurs by {t^k}k = 0
∞  with

t^k < t^k + 1 and e(t) = x(t) − x(t^k). The event-triggered condition is
expressed in terms of the inequality

∥ e(t) ∥2 ≥ η∥ x(t) ∥2 + ε (5)

where ε and η are positive parameters. As shown in Fig. 1, event
detector tests the triggering condition (5) continuously by receiving
state from observer to determine whether an event is generated or
not. Once an event is triggered, sampling occurs immediately. The
sampling mechanism obtains the latest state information at
sampling instants and then transmits it to controller. When an event
happens, the error e(t) is reset to zero and starts growing until it
triggers a new measurement update. We assume that the first event

is generated at time t^0 = t0. With the state x(t^k) sampled at time t^k,
the next sampling instant t^k + 1 is determined by

t^k + 1 = inf {t > t^k | ∥ e(t) ∥2 = η∥ x(t) ∥2 + ε} . (6)

Under the triggering condition (5), we construct a state feedback
controller. Suppose that n samplings occur on interval [ti, ti + 1) and
t^k + 1 is the first sampling instant on this interval. According to
switching sequence (2), without loss of generality, we assume that
subsystem i is active on interval [ti, ti + 1], the piecewise continuous
controller can be set as

u = ui =

Kix(t^k), t ∈ [ti, t^k + 1)
Kix(t^k + 1), t ∈ [t^k + 1, t^k + 2)
⋯
Kix(t^k + n), t ∈ [t^k + n, ti + 1)

(7)

where Ki is the controller gain of subsystem i.
 
Remark 1: We assume that the controller possess same switching
rule with switched system (1). Switching signal adopted here is
time dependent and is known a priori. It is rational to construct
controller (7) for subsystem i to form closed-loop system on
[ti, ti + 1].
 
Remark 2: The plant and the controller switch synchronously since
the switching rule depends on the dwell time. As shown in Fig. 1,
event detector possesses three functions: detector, sampler and
transmitter. The information of system state is sampled when an
event is triggered and then transmitted to controller. Detector tests
event-triggered condition continuously, but sampler and transmitter
do not work if no event occurs. The feedback loop is in fact
running in open-loop form during arbitrary two consecutive
samplings.

Controller receives the sampled state x(t^k) at sampling instant t^k
and holds it until the next event generates. On sampling interval
[t^k, t^k + 1), controller only computes at sampling instant t^k. We
therefore introduce a zero-order holder to keep the control signal
continuous and assume that controller and actuator are collocated
together.

 
Remark 3: Piecewise continuous controllers with various forms

have been widely applied in continuous-time linear systems (see
e.g. [36, 37]. While in this paper piecewise continuous controller is
formed as a continuous step signal induced by event-triggered
sampler and zero-order holder.

3.2 Stability analysis

According to switching sequence (2), we assume that subsystem i
is active on [ti, ti + 1). Suppose that n samplings occur on interval
[ti, ti + 1) and t^k + 1 is the first sampling instant on this interval. For
∀t ∈ [ti, t^k + 1), [t^k + 1, t^k + 2), …, [t^k + n, ti + 1), error e(t) = x(t) − x(t^k + j)
holds for all j = 0, 1, …, n. Substituting controller (7) into
subsystem i yields

ẋ(t) = Aix(t) + BiKix(t^k + j)
= Aix(t) + BiKi(x(t) − e(t))
= (Ai + BiKi)x(t) − BiKie(t) .

(8)

The following theorem presents main result of this section.
 
Theorem 1: Consider system (1) with controller (7) determined

by triggering condition (5). For given scalars η > 0, μ > 1, ε > 0
and N0 ≥ 1, if there exist matrices Pi > 0, Pj > 0 and Ki for
∀i, j ∈ ℳ such that

Fig. 1  Event-triggered control system
 

IET Control Theory Appl., 2018, Vol. 12 Iss. 7, pp. 1000-1005
© The Institution of Engineering and Technology 2018

1001

 17518652, 2018, 7, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cta.2017.1341, W

iley O
nline L

ibrary on [03/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Ai
TPi + PiBiKi + PiAi + Ki

TBi
TPi PiBiKi

∗ −I
< 0 (9)

and

Pi ≤ μPj, Pj ≤ μPi (10)

then system (1) is globally uniformly bounded for any switching
signal with average dwell time satisfying τa > (ln μ)/δ, where δ > 0
can be computed from the feasible matrix solutions of (9) and (10),
and the state of system (1) exponentially converges to the bounded
region

ℬ(ε) := x(t) | ∥ x(t) ∥ ≤
εeδτa (μ − 1)eδτaN0 + 1 − εμ

min∀i ∈ ℳ (λ(Pi))δ(eδτa − μ)
. (11)

 
Proof: Construct piecewise Lyapunov function candidate

Vi(t) = xT(t)Pix(t) (12)

where Pi > 0. For t ∈ [ti, ti + 1), differentiating (12) along solutions
of system (8) and using Lemma 1 and condition (5) gives

V̇ i(t) = 2 (Ai + BiKi)x(t) − BiKie(t) TPix(t)
= 2xT(t)(Ai + BiKi)TPix(t) − 2eT(t)Ki

TBi
TPix(t) .

≤ 2xT(t)(Ai + BiKi)TPix(t) + eT(t)e(t)
+xT(t)PiBiKiKi

TBi
TPix(t)

≤ xT(t)Qix(t) + ε

(13)

where Qi = Ai
TPi + Ki

TBi
TPi + PiAi + PiBiKiKi

TBi
TPi + ηI +PiBiKi.

By utilising Schur complement lemma, inequality (9) is equivalent
to Qi < 0. Thus, we have from (13) that

V̇ i(t) ≤ − λmin( − Qi) ∥ x(t) ∥2 + ε

≤ − λmin( − Qi)
λmax(Pi)

xT(t)Pix(t) + ε

= − δiVi(t) + ε

(14)

where δi = (λmin( − Qi))/(λmax(Pi)) > 0. Integrating (14) from ti to t
yields

Vi(t) ≤ e−δi(t − ti)Vi(ti) + ε∫
ti

t
e−δi(t − s) ds . (15)

Moreover, inequality (10) implies that Vli(ti) ≤ μVli − 1(ti
−) for

∀li, li − 1 ∈ ℳ. Let lti = l(ti, t) = Nσ(ti, t) ≤ ((t − ti)/τa) + N0 and
δ = min∀li ∈ ℳ δli > 0. From (15), we have

Vσ(t) = Vli(t) ≤ e−δ(t − ti)μVli − 1(ti
−) + ε

δ 1 − e−δ(t − ti)

≤ e−δ(t − ti)μ e−δ(ti − ti − 1)Vli − 1(ti − 1)

+ ε
δ 1 − e−δ(ti − ti − 1) + ε

δ 1 − e−δ(t − ti)

≤ e−δ(t − ti − 1)μVli − 1(ti − 1)

+ εμ
δ e−δ(t − ti) − e−δ(t − ti − 1) + ε

δ 1 − e−δ(t − ti)

≤ e−δ(t − ti − 1)μ2Vli − 2(ti − 1
− )

+ εμ
δ e−δ(t − ti) − e−δ(t − ti − 1) + ε

δ 1 − e−δ(t − ti)

≤ ⋯ ≤ e−δ(t − t0)μlt0Vl0(t0) + εμlt1

δ e−δ(t − t2) − e−δ(t − t1)

+ εμlt2

δ e−δ(t − t3) − e−δ(t − t2)

+⋯ + εμ2

δ e−δ(t − ti − 1) − e−δ(t − ti − 2)

+ εμ
δ e−δ(t − ti) − e−δ(t − ti − 1) + ε

δ 1 − e−δ(t − ti)

≤ e−δ(t − t0)μlt0 Vl0(t0) − ε
δμ

+ ε(μ − 1)
δ ∑

m = 0

lt2
μme−δ(t − ti − m) + ε

δ

≤ μN0e− δ − (lnμ/τa) (t − t0) Vl0(t0) − ε
δμ

+ ε(μ − 1)
δ eδτaN0 ∑

m = 0

lt2
em(lnμ − δτa) + ε

δ

(16)

where τd is the minimum dwell time. From Lyapunov function
(12), we have

Vli(t) = xT(t)Plix(t) ≥ λ(Pli) ∥ x(t) ∥2

≥ min
∀li ∈ ℳ

(λ(Pli)) ∥ x(t) ∥2 = α ∥ x(t) ∥2 (17)

and

Vσ(t0)(t0) ≤ max
∀li ∈ ℳ

(λ̄(Pli)) ∥ x(t0) ∥2 = β ∥ x(t0) ∥2
(18)

where α = min∀li ∈ ℳ (λ(Pli)), β = max∀li ∈ ℳ (λ̄(Pli)). Thus,
combining (16) with (17) and (18), we have

∥ x(t) ∥2 ≤ 1
αVli(t)

≤ β
α μN0e− δ − ((lnμ)/τa) (t − t0) ∥ x(t0) ∥2 − ε

δμβ

+ ε(μ − 1)
αδ eδτaN0 ∑

m = 0

lt2
em(lnμ − δτa) + ε

αδ .

(19)

The condition τa > (ln μ)/δ in Theorem 1 implies that
δ − ((ln μ)/τa) > 0 and ln μ − δτa < 0. Then from (19), we have

∥ x(t) ∥2 ≤ β
α μN0e− δ − ((lnμ)/τa) (t − t0) ∥ x(t0) ∥2 − ε

δμβ

+ ε(μ − 1)eδτa(N0 + 1)

αδ(eδτa − μ)
+ ε

αδ ,
(20)

under which uniform boundedness of system (8) can be
guaranteed.□

 
Remark 4: If ε = 0 in (5), then the result of Theorem 1 can be

degenerated to the following corollary.
 
Corollary 1: Consider system (1) with controller (7) determined

by triggering condition (5) with ε = 0. For given scalars η > 0 and
μ > 1, if there exist matrices Pi > 0, Pj > 0 and Ki for ∀i, j ∈ ℳ
such that inequalities (9) and (10) hold, then system (1) is
exponentially stable for any switching signal with average dwell
time satisfying τa > (ln μ)/δ, where δ > 0 can be computed from
the feasible matrix solutions of (9) and (10).
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4 Observer-based event-triggered control
4.1 Asymptotic observer

For subsystem i, we construct observer

x^̇(t) = Aix^(t) + Biui(t) + Li(y(t) − Cix^(t)) (21)

where x^(t) ∈ ℝn is observer state, Li is observer gain of subsystem
i. Suppose that state observer is collocated with sensor and multiple
sub-observers possess the same switching law with system (1). We
form switching observer

x^̇(t) = Aσx^(t) + Bσuσ(t) + LσCσ(x(t) − x^(t)) . (22)

Let error be e(t) = x(t) − x^(t). Then error system

ė(t) = (Aσ − LσCσ)e(t) (23)

can be established from (1) and (22).
The following lemma presents design of asymptotic observer.
 
Lemma 2: Consider system (23). For ∀i ∈ ℳ, if there exist

matrices Ri > 0 and Xi satisfying

Ai
TRi − Ci

TXi
T + RiAi − XiCi < 0, (24)

then (21) is an asymptotic observer of subsystem i and gain Li is
given by Li = Ri

−1Xi.

4.2 Sampling mechanism

We assume that event detector and sampler are collocated in a
same node and denote the instants when an event happens by
{t^k}k = 0

∞  with t^k < t^k + 1. Let e^(t) = x^(t) − x^(t^k). Construct event-
triggered condition

∥ e^(t) ∥2 ≥ η∥ x^(t) ∥2 + ε (25)

where ε and η are positive parameters. With the state x^(t^k) sampled
at time t^k, the next sampling instant t^k + 1 can be determined by

t^k + 1 = inf {t > t^k | ∥ e^(t) ∥2 = η∥ x^(t) ∥2 + ε} . (26)

Under the triggering condition (25), we construct an observer-
based feedback controller. Suppose that n samplings occur on
interval [ti, ti + 1) and t^k + 1 is the first sampling instant on this
interval. According to switching sequence (2), we set piecewise
continuous controller

u = ui =

Kix^(t^k), t ∈ [ti, t^k + 1)
Kix^(t^k + 1), t ∈ [t^k + 1, t^k + 2)
⋯
Kix^(t^k + n), t ∈ [t^k + n, ti + 1)

(27)

where Ki is the controller gain of subsystem i.

4.3 Stability analysis

According to switching sequence (2), subsystem li is active on
[ti, ti + 1). Suppose that n samplings occur on interval [ti, ti + 1) and
t^k + 1 is the first sampling instant on this interval. For
∀t ∈ [ti, t^k + 1), [t^k + 1, t^k + 2), …, [t^k + n, ti + 1), error e^(t) = x^(t) − x^(t^k + j)
holds for all j = 0, …, n. Substituting controller (27) into (21)
yields

x^̇(t) = Aix^(t) + BiKix^(t^k + j) + LiCie(t)
= Aix^(t) + BiKi(x^(t) − e^(t)) + LiCie(t)
= (Ai + BiKi)x^(t) + LiCie(t) − BiKie^(t) .

(28)

Together with (23) and (28), for t ∈ [ti, ti + 1), we have

x^̇(t) = (Ai + BiKi)x^(t) + LiCie(t) − BiKie^(t)
ė(t) = (Ai − LiCi)e(t) . (29)

We know from e(t) = x(t) − x^(t) that system (1) is stable under
feedback control (29) if and only if augmented system

x^̇(t) = (Aσ + BσKσ)x^(t) + LσCσe(t) − BσKσe^(t)
ė(t) = (Aσ − LσCσ)e(t) (30)

is stable. The compact form of (30) can be written as

ξ̇(t) = Āσξ(t) + B̄σe~(t) (31)

where

ξ(t) = x^(t)
e(t) , Āσ =

Aσ + BσKσ LσCσ

0 Aσ − LσCσ
,

B̄σ =
−BσKσ 0

0 0
, e~(t) = e^(t)

0 .

We thus focus on system (31). The following theorem gives main
result of this section.
 
Theorem 2: Consider system (31) with sampling instants
determined by (25). For given scalars η > 0, μ > 1, ε > 0 and
N0 ≥ 1, if there exist matrices Pi > 0, Pj > 0, Ki and Li for
∀i, j ∈ ℳ satisfying

Q^
i
11

PiLiCi PiBiKi

∗ Q^
i
22 0

∗ ∗ −I

< 0 (32)

and

Pi ≤ μPj, Pj ≤ μPi (33)

where

Q^
i
11 = Ai

TPi + Ki
TBi

TPi + PiBiKi + PiAi,
Q^

i
22 = PiAi − PiLiCi + Ai

TPi − Ci
TLi

TPi,

then system (31) is globally uniformly bounded for any switching
signal with average dwell time satisfying τa > (ln μ)/δ, where δ > 0
can be computed from feasible matrix solutions of (32) and (33),
and the state of system (31) exponentially converges to the
bounded region

ℬ(ε) := ξ(t) | ∥ ξ(t) ∥ ≤
εeδτa (μ − 1)eδτaN0 + 1 − εμ

min∀i ∈ ℳ (λ(Pi))δ(eδτa − μ)
. (34)

 
Proof: The proof is analogous to the one of Theorem 1, thus it is
omitted. □

5 Minimum inter-event interval
Event-triggered control brings more complicated dynamic
behaviour to switched systems than time-triggered control. In
event-triggered control, the execution of control tasks occurs
aperiodically and inter-event intervals are varying. Therefore, we
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need to show that there always exists a non-zero lower bound of
the minimum inter-event interval for event-triggered condition to
exclude Zeno behaviour. In order to highlight the proof process, we
only consider observer-based event-triggered control. The proof of
the lower bound of minimum inter-event interval in state-based
event-triggered control can be easily deduced from the following
analysis.
 
Theorem 3: With event-triggered condition (25), the minimum
inter-event interval is lower bounded by a positive scalar.
 
Proof: Suppose that n samplings happen on interval [ti, ti + 1) and
t^k + 1, …, t^k + n are n sampling instants, respectively. On sampling
intervals [ti, t^k + 1), [t^k + 1, t^k + 2), …, [t^k + n, ti + 1), no matter which
sampling interval t belongs to, x^(t^k + l) are constants and
e^(t) = x^(t) − x^(t^k + l), where l = 0, 1, …, n. Then, for
∀t ∈ [ti, t^k + 1), [t^k + 1, t^k + 2), …, [t^k + n, ti + 1), we have

e^̇(t) = x^̇(t) = Aix^(t) + BiKix^(t^k + l) + LiCie(t)
= Aie^(t) + (Ai + BiKi)x^(t^k + l) + LiCie(t) .

(35)

Hence

e^(t) = eAi(t − t̂ k + l)e^(t^k + l)

+∫
t̂ k + l

t
eAi(t − s) (Ai + BiKi)x^(t^k + l) + LiCie(s) ds .

(36)

Since e^(t^k + l) = x^(t^k + l) − x^(t^k + l) = 0, then

e^(t) = ∫
t̂ k + l

t
eAi(t − s) (Ai + BiKi)x^(t^k + l) + LiCie(s) ds . (37)

Therefore

∥ e^(t) ∥ ≤ ∫
t̂ k + l

t
e ∥ Ai ∥ (t − s) ∥ (Ai + BiKi) ∥ ∥ x^(t^k + l) ∥

+ ∥ LiCi ∥ ∥ e(s) ∥ ds

≤ ∫
t̂ k + l

t
e ∥ Ai ∥ (t − s) ∥ (Ai + BiKi) ∥ ∥ x^(t^k + l) ∥

+ ∥ LiCi ∥ ∥ e∑m = 1
i (Am − LmCm)s ∥ ∥ e(0) ∥ ) ds .

(38)

Noticing that Am − LmCm are Hurwitz for ∀m = 1, …, i with
λmax(Am − LmCm) < 0, we have

∥ e^(t) ∥ ≤ ∫
t̂ k + l

t
e ∥ Ai ∥ (t − s)( ∥ (Ai + BiKi) ∥ ∥ x^(t^k + l) ∥

+e∑m = 1
i ((λmax(Am − LmCm))/2)s ∥ LiCi ∥ ∥ e(0) ∥ ) ds

≤ ϕ(t^k + l)∫
t̂ k + l

t
e ∥ Ai ∥ (t − s) ds

(39)

where

ϕ(t^k + l) = ∥ (Ai + BiKi) ∥ ∥ x^(t^k + l) ∥
+e∑m = 1

i ((λmax(Am − LmCm))/2)t̂ k + l ∥ LiCi ∥ ∥ e(0) ∥ .

If ∥ Ai ∥ ≠ 0, we have

∥ e^(t) ∥ ≤ ϕ(t^k + l)
∥ Ai ∥ e ∥ Ai ∥ (t − t̂ k + l) − 1 . (40)

According to (25), the next event will be generated when
∥ e^(t) ∥2 = η ∥ x^(t) ∥2 + ε. Hence, a lower bound on inter-event
interval denoted by T = t − t^k + l can be determined by

ϕ(t^k + l)
∥ Ai ∥ e ∥ Ai ∥ T − 1 = η ∥ x^(t) ∥2 + ε . (41)

Thus

T = 1
∥ Ai ∥ln ∥ Ai ∥ η ∥ x^ ∥2 + ε

ϕ(t^k + l)
+ 1 (42)

which means that for any given sampling instant t^k + l, T > 0. If
∥ Ai ∥ = 0, we have

Tϕ(t^k + l) = η ∥ x^(t) ∥2 + ε (43)

which also indicates that T > 0. With the above discussion, it can
be concluded that there always exists a positive lower bound of the
minimum inter-event interval for event-triggered condition (25). □

6 Numerical example
In this section, we present a numerical example based on state-
based event-triggered control method to show the advantage of the
proposed method.

Example: Consider system (1) with two subsystems, where

A1 = −0.4 0
0.7 −0.7 , B1 = 1

1 ,

A2 = −0.6 0.5
0.3 −0.6 , B2 = 1

1 .

Let parameters be η = 1 and μ = 1.1. Choose K1 = −0.8 −1
and K2 = −0.7 −0.7 . By solving inequalities (8) and (9) in
Theorem 1, we obtain

P1 = 0.9546 −0.2768
−0.2768 0.8332 , P2 = 0.9442 −0.2602

−0.2602 0.8677 ,

Q1 = −0.4823 0.3833
0.3833 −0.7715 , Q2 = −0.7883 0.5479

0.5479 −0.7903 .

δ is computed by

δ = min
i = 1, 2

λmin( − Qi)
λmax(Pi)

= 0.1864

form the feasible solutions, and then the minimum average dwell
time is obtained by τa

∗ = (ln μ)/δ = 0.5113. Choose a switching
sequence τa > τa

∗ and an initial state x0 = [ − 2 3]T. In order to show

Fig. 2  Simulation results with event-triggered condition
∥ e(t) ∥2 ≥ ∥ x(t) ∥2 + 1
(a) State responses, (b) Event-triggered condition, (c) Switching signal, (d) Control
input
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the advantage of the proposed method, we take ε = 1, 0.1, 0,
successively.

Under event-triggered sampling mechanism (4) with different
values of ε and a common switching rule satisfying τa > τa

∗, we
obtain simulation results shown in Figs. 2–4, respectively, from
which, we can see that sampling times reduce when ε becomes
large and state trajectories are influenced by the change of ε.
Therefore, selecting appropriate parameter ε can save the cost
while maintaining the performance of closed-loop system.

7 Conclusions
An improved event-triggered sampling mechanism is adopted into
controller design for switched linear systems and a globally
uniformly bounded condition of the closed-loop switched system is
achieved in the framework of average dwell time technique. A
lower bound of the minimum inter-event interval is derived to
avoid Zeno behaviour in event-triggered sampling process.
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Fig. 3  Simulation results with event-triggered condition
∥ e(t) ∥2 ≥ ∥ x(t) ∥2 + 0.1
(a) State responses, (b) Event-triggered condition, (c) Switching signal, (d) Control
input

 

Fig. 4  Simulation results with event-triggered condition
∥ e(t) ∥2 ≥ ∥ x(t) ∥2

(a) State responses, (b) Event-triggered condition, (c) Switching signal, (d) Control
input
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