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Abstract—Due to the increasing penetration of distributed
energy resources (DERs), the load composition in distribution
grids has significantly changed. This inverter-based device has
notably different behavior from traditional static and induc-
tion motor loads. To accurately represent the combination of
static load, induction motor and the emerging inverter-based
devices, the composite load model with distributed genera-
tion (CMPLDWG) has been developed by Western Electricity
Coordinating Council (WECC). Due to the large number of
parameters and model complexity, the CMPLDWG model brings
new challenges to parameter identification, which is critical
to power system studies. To address these challenges, in this
paper, a cutting-edge approach inspired by the evolutionary
deep reinforcement learning (EDRL) with an intelligent explo-
ration mechanism is innovatively proposed to perform parameter
identification for CMPLDWG. First, to extract parameters’ con-
tributions to dynamic power, parameter sensitivity analysis is
conducted using a data-driven feature-wise kernelized Lasso
(FWKL). Then, the EDRL with intelligent exploration, which
can handle the natural high nonlinearity and nonconvexity of
CMPLDWG, is employed to perform parameter identification.
In the parameter identification process, the extracted parameter
sensitivity weights are innovatively integrated into the EDRL with
intelligent exploration to improve discovery efficiency. Finally, the
proposed approach is validated using numerical experiments.

Index Terms—WECC composite load model, parameter iden-
tification, evolutionary strategy, intelligent exploration.

I. INTRODUCTION

PARAMETER identification of load models is essential
to power systems studies, such as planning, operation

and control [1]–[4]. Due to the increasing diversity of load
types and the integration of distributed energy resources
(DERs) [5], [6], parameter identification still remains a
challenging problem to academic researchers and indus-
trial practitioners. Measurement-based approaches are widely
employed to perform parameter identification, where voltage
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and power measurements in fault-induced delayed-voltage-
recovery (FIDVR) events are used to determine the parameters
of given dynamic load models.

Previous works have mainly focused on identifying param-
eters of a composite load model which consists of a ZIP
and an induction motor, where ZIP model is a combination
of a constant-impedance load, a constant-current load and a
constant-power load. In [2], based on trajectory sensitivities,
the induction motor parameter number is reduced and only
critical parameters are identified. The proposed approach is
validated using real field measurements, and it is demonstrated
that the approach can decrease identification time without
losing the composite load model’s dynamic characteristics.
In [7], a robust time-varying parameter identification approach
is proposed for synthesis load modeling. The synthetic load
model includes time-varying ZIP, induction motor, and equiv-
alent line impedance model. To achieve the goal of robustness
enhancement, dynamic programming is used to detect voltage
disturbances, and then a time-varying parameter identifier with
a smaller iteration threshold is designed. In [8], a multi-modal
long short-term memory deep learning method is employed to
identify the time-varying parameters of the composite load
model. In [9], a computationally efficient technique is uti-
lized for identifying the composite load model parameters,
by performing a similarity analysis of parameter sensitiv-
ity. The partial derivative of each parameter is employed to
identify parameters with similar sensitivities, and Levenberg-
Marquardt algorithm is used to solve the optimization problem.
To improve computational efficiency, in [10], model parameter
sensitivities are analyzed using eigenvalues of Hessian matrix,
and the linear dependence between two parameters are then
identified by examining the condition number of the Jacobian
matrix. In [11], a robust time-varying parameter identifica-
tion approach is developed for the composite load model. A
batch-mode regression form is constructed to guarantee data
redundancy, and the down-weighting coefficient for each mea-
surement is calculated to reduce the impacts of outliers. To
sum up, in previous works, both traditional optimization meth-
ods and modern learning-based approaches are employed to
perform parameter identification of the composite load model
which consists of a ZIP model and an induction motor model.

In recent years, as a large number of DERs are inte-
grated into distribution systems, the composition of loads has
changed significantly [12]–[14]. In order to accurately capture
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the characteristics of this new type of load in modern power
grids, the Western Electricity Coordinating Council (WECC)
has developed a composite load model with distributed gen-
eration (CMPLDWG) [15]. Also, researchers have dedicated
great efforts into studying this newly-proposed advanced load
model. In [16], an easy-to-use tool is developed to gener-
ate dynamic load data to enhance utilities’ planning studies.
This tool can be adjusted to accommodate different customer
types, various load components and characteristics. In [17],
a generic modeling and open-source implementation of the
WECC composite load model are presented, which reduces
the gap between the WECC model and its further implemen-
tation. In [1], an approach is proposed for dynamic composite
load modeling, where parameter dependency of the complex
dynamic load model is analyzed and visualized using matrix
decomposition and data clustering techniques. Meanwhile, the
parameter identification performance is improved by adding a
regularization term to include a priori parameter information
into the objective function. However, the a priori parameter
information is not generally available. In addition, the newly-
approved aggregated distributed energy resources (DER_A)
model in CMPLDWG has not been considered in [1]. In [18],
the parameter identification process is divided into two steps:
determining load composition and selecting a best-fit parame-
ter vector candidate from Monte-Carlo simulations. To sum
up, the primary disadvantages of previous WECC model
parameter identification approaches are that they rely on
prior knowledge of parameters or a comprehensive library of
parameter candidates.

The CMPLDWG model contains 183 parameters, and the
order of differential equations reaches 25. Therefore, the tra-
ditional optimization methods might not be able to handle the
high-dimensional parameter vector and the severe nonconvex-
ity of model structure. Considering this, we seek to perform
parameter identification for CMPLDWG using an advanced
learning-based approach with an embedded intelligent explo-
ration (IE) mechanism, which is inspired by the evolutionary
deep reinforcement learning (EDRL) technique. The proposed
approach can efficiently avoid deceptive local optima and
can handle the high-dimensional parameter vector [19], [20].
Specifically, first, the parameter sensitivity analysis (PSA) is
conducted to obtain sensitivity weights reflecting contribu-
tions of parameters to dynamics, using feature-wise kernel-
ized Lasso (FWKL), where Lasso denotes the least absolute
shrinkage and selection operator. Then, the extracted param-
eter sensitivity weights are integrated into EDRL with IE
to perform intelligent CMPLDWG parameter exploration by
avoiding purely randomized or ineffective search. Parallelly,
the EDRL with IE performs parameter exploitation using
evolutionary strategy. Finally, the EDRL with IE guides the
identifier to balance exploitation and exploration by designing
time-varying dynamic weights assigned to the approximated
performance gradient and novelty gradient.

The main innovations and contributions of our paper
are summarized as follows: (1) To address the challenges
of parameter identification caused by the nonlinearity of
CMPLDWG model, we have designed a mechanism of intel-
ligent exploration for encouraging the parameter identifier to

Fig. 1. The structure of the WECC composite load model with the distributed
generation model of DER_A.

escape from deceptive local optima. The exploration mecha-
nism is achieved through time-varying dynamic weights which
intelligently balance the exploitation and exploration. Most
importantly, once the parameter identifier is stuck in a local
optimum, it is stimulated to aggressively explore undiscovered
parameter space. (2) The extracted CMPLDWG parameter sen-
sitivity weights are innovatively integrated into the intelligent
exploration to achieve directed and efficient parameter space
discovery. By doing this, the parameter identifier can avoid
purely randomized or inefficient exploration.

The rest of the paper is organized as follows: Section II
introduces the CMPLDWG model and the overall frame-
work of the proposed parameter identification approach.
Section III proposes the method for parameter sensitivity
analysis. Section IV describes the process of identifying
CMPLDWG parameters using EDRL which is hybridized with
IE. In Section V, case studies are conducted to validate the
proposed approach and Section VI concludes the paper.

II. CMPLDWG MODEL AND OVERALL PARAMETER

IDENTIFICATION FRAMEWORK

A. CMPLDWG Model

This paper focuses on the comprehensive WECC composite
load model, which consists of three sections: substation, feeder
and load, as illustrated in Fig. 1. The substation section is com-
posed of a transformer model and a shunt capacitor model. The
feeder section is denoted using an equivalent feeder model.
The load section includes three three-phase induction motor
models with different dynamic characteristics, one single-
phase A/C performance-based motor model, an electronic load
model, a static load model and a distributed generator model.
In this paper, the distributed generator model is specified as
the newly-approved DER_A model presented in [21]. Table I
shows a list of WECC CMPLDWG model parameters of which
detailed definitions can be found in [15], [21]. In addition,
the mathematical state-space representations of CMPLDWG
model are presented in [22].

B. Overall Framework of the Proposed Approach

The process of identifying unknown CMPLDWG parame-
ters comes down to finding optimal parameters by reducing
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TABLE I
PARAMETER LIST OF CMPLDWG MODEL

the following estimation residual [1]:

min
θ

l(Y, θ , V) = min
θ

1

2

(
||Y − f (θ , V)||22

)
(1)

where, Y denotes active/reactive power measurement vector, θ

represents the vector of parameters to be identified, V denotes
voltage measurement vector, l represents calculating the esti-
mation residual, || · ||2 is the l2-norm, and f (·) denotes the
mathematical representation of CMPLDWG model developed
in [22]. More detailed variable definitions will be elabo-
rated in Section III. To determine the optimal parameters for
CMPLDWG, the EDRL approach with IE is developed in this
paper. The components of parameter identification framework
are illustrated in Fig. 2: Component I - Sensitivity Analysis:
Sensitivity analysis evaluates the contributions of parameters
to dynamic power measurements, and is based on the obser-
vation that the change of some parameters has an insignificant
impact on power measurements. The high-order character-
istic of induction motors and DER_A in CMPLDWG can
significantly complicate PSA when using traditional meth-
ods. To address this challenge, an alternative data-driven PSA
approach, FWKL, is proposed. The FWKL utilizes a set of

randomly-generated CMPLDWG parameter vectors and cor-
responding calculated residuals to extract weights indicating
parameter sensitivities. The PSA is formulated as a Lasso
optimization problem given as

min
W∈Rd

1

2
||e−�TW||22 + λ||W||1, (2)

where, e is the estimation residual vector, � denotes the
randomly-generated parameter vectors in a matrix form, W =
[W1, . . . , Wd]T represents the parameter sensitivity weight
vector, || · ||1 is the l1-norm and λ is the regularization
parameter which is determined using grid search with cross-
validation. Note that sensitivity analysis is a one-off work for
each fault event. The extracted parameter sensitivity weight
vector, W, is passed to the novelty gradient estimator in
each iteration whose number is denoted by t. Component
II - Parameter Vector Perturbator: In each iteration, to per-
form evolution, a perturbator is designed to generate multiple
mutated parameter vectors, θ ′t’s, using the identified parame-
ter vector in the last iteration, θ t, and random variance vector,
εt. θ ′t’s and εt’s are then sent to a performance gradient
estimator and a novelty gradient estimator to approximate
performance and novelty gradients, respectively. Component
III - Performance Gradient Estimator: This estimator achieves
the function of exploitation of EDRL. Specifically, using
θ ′t’s and εt’s generated by the parameter vector perturbator,
the performance gradient estimator determines the direction
in which θ t should move to improve expected reward. The
performance gradient, �θet

t , is then passed to a parame-
ter updater. Component IV - Novelty Gradient Estimator:
This component performs exploration by estimating the nov-
elty gradient, �θer

t , using the generated θ ′t’s and εt’s, and
it also intelligently encourages the parameter identifier to
explore unvisited parameter space. �θer

t is then sent to the
parameter updater. Component V - Parameter Updater: To
balance exploitation and exploration, the parameter updater
assigns time-varying dynamic weights to the approximated
performance and novelty gradients:

�θ t = ωt�θet
t + (1− ωt)�θer

t , (3)

where, ωt denotes a dynamic weight. Then, θ t+1 is calcu-
lated and added into the parameter vector archive to update
the explored parameter space. Component VI - Archive: The
archive collects the previously generated parameter vectors
which are passed to the novelty gradient estimator for novelty
evaluation. Component II to V compose the EDRL algorithm
with IE. Since the construction of the parameter vector archive
is straightforward, we will focus on elaborating the modules of
sensitivity analysis and EDRL with IE in the next two sections.

III. PARAMETER SENSITIVITY ANALYSIS

PSA examines the sensitivity of dynamic power measure-
ments with respect to load model parameters. In previous
works, partial derivative of dynamic power to each parame-
ter is calculated to conduct sensitivity analysis of induction
motor parameters [9]. However, it becomes challenging to
directly apply analytical approaches to calculate partial deriva-
tives because of the high order and the complicated structure
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Fig. 2. The overall structure of the proposed parameter identification
approach for CMPLDWG model.

of mathematical differential equations of the WECC compos-
ite load model. For example, the three-phase induction motor
model in CMPLDWG is of 5th order and the DER_A model
has ten state variables. Such a complex high-order nonlinear
system can significantly complicate the calculation of partial
derivatives. To address this challenge, we seek to employ a
high-dimensional feature selection technique to evaluate the
dependence of dynamic power on the CMPLDWG parame-
ters [23]. Specifically, we use a data-driven FWKL instead of
employing analytical derivatives [9].

Let θ i ∈ R
d be a randomly-generated parameter vector and

d be the number of parameters, therefore, the power residual
corresponding to θ i can be calculated as

ei = ||f (θ i, V)− Y||2, (4)

where, V ∈ R
K is a vector of voltage measurements, K denotes

the total number of measurement points, Y = [PT, QT]T,
P ∈ R

K and Q ∈ R
K represent the vector of recorded

active power and reactive measurements, respectively. Also,
T denotes the transpose. With a large number of generated
θ i’s, we can obtain n independent and identically distributed
(i.i.d.) sample and residual pairs:

{(θ i, ei), i = 1, . . . , n}. (5)

To perform supervised feature selection, first, we represent
the original parameter vectors and corresponding residuals in
a matrix format as

� = [θ1, . . . , θn] ∈ R
d×n, (6a)

e = [e1, . . . , en]T ∈ R
n. (6b)

Then, PSA is formulated as a Lasso optimization problem
formulated in (2) which works well for linear regression.
However, the nonlinear dependency in our specific problem
hinders its application. Therefore, we employ the feature-wise
nonlinear Lasso to solve our problem and the key idea is to
apply a nonlinear transformation in a feature-wise manner.
Specifically, the generated parameter matrix, �, is represented
in a feature-wise manner:

� = [
β1, . . . ,βd

]T ∈ R
d×n, (7)

where, βk = [θk,1, . . . , θk,n]T ∈ R
n is a vector denoting the k-

th feature for all samples. To capture the nonlinear dependency
of e on θ , dynamic power residual and parameter vector are
transformed by a nonlinear function ϕ(·) : R

n → R
p. Then, the

Lasso optimization problem given in the objective function (2)
in the transformed space is reformulated as

min
W∈Rd

1

2
||ϕ(e)−

d∑
k=1

Wkϕ
(
βk

)||22 + λ||W||1. (8)

Although the objective function (8) can capture nonlinear
dependency, there is no constraint for Wk, k = 1, . . . , d, and
the same transformation function ϕ(·) for e and βk limits the
flexibility of capturing nonlinearity. To solve this, we seek to
employ a revised FWKL to perform feature selection [23], and
the revised objective function is formulated as

min
W∈Rd

1

2
||U −

d∑
k=1

WkV
(k)||2Frob + λ||W||1, (9a)

s.t. W1, . . . , Wd ≥ 0. (9b)

where, || · ||Frob denotes the Frobenious norm, U = �U� and
V

(k) = �V(k)� are centered Gram matrices, Ui,j = U(ei, ej)

and V(k)
i,j = V(θk,i, θk,j) are Gram matrices, U(e, e′) and

V(θ , θ ′) are kernel functions, � = In− 1
n 1n1T

n denotes the cen-
tering matrix, In represents the n-dimensional identity matrix,
and 1n denotes the n-dimensional vector with all ones. For the
two kernel functions U(·) and V(·), we employ the Gaussian
kernel which is formulated as

K
(
x, x′

) = exp

(
−

(
x− x′

)2

2σ 2
x

)
, (10)

where, σx is the Gaussian kernel width.
In the objective function (9a), the decoupling between U(·)

and V(·) provides more flexibility compared with the objective
function (8). In addition, the non-negativity constraint in (9b)
fits the specific application in our problem, since negative sen-
sitivity parameter weights do not have practical interpretability.
Intuitively, problem (9) tends to find non-redundant param-
eters with significant contributions to power residual, and
equivalently, to dynamic power. Also, for two strongly depen-
dent features, either of their sensitivity weights tends to be
eliminated. The parameter sensitivity weight vector, W, is
then integrated into the parameter identification algorithm to
accelerates the learning process, which will be presented in
Section IV.

IV. PARAMETER IDENTIFICATION

USING THE EDRL WITH IE

As stated in previous sections, the severe nonlinearity, high
nonconvexity and the large number of parameters bring sig-
nificant challenges to perform parameter identification for
the CMPLDWG model when using existing approaches. This
motivates us to tackle this challenge utilizing the EDRL with
IE, which is recently demonstrated to be able to perform
well on high-dimensional optimization tasks [19], [24]. The
basic idea of performing optimization tasks using evolution
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TABLE II
NUMERICAL INTERVAL OF LOAD PARAMETERS

strategy is: During each iteration, a population of parameter
vectors is perturbed based on one selected parameter vector
among a meta-population, and then, these mutated vectors
are recombined to update the selected ancestor vector. In this
paper, the EDRL is also hybridized with IE to improve explo-
ration. Compared with traditional random and blind search
strategy, the IE module achieves efficient and directed explo-
ration, which can efficiently assist EDRL to escape from local
optima. The detailed steps are described as follows:

Step I - Initialization: The first step is to initialize M
random parameter vectors which will be updated in each
iteration. Note that only one vector is probabilistically selected
to update in each iteration. The initialized M vectors are
denoted as S = {θ1

1, . . . , θ
M
1 }, where t denotes the number

of iteration. The objective of constructing a meta-population
is to enhance additional diversity. M and the tuning param-
eters in the remaining sections are determined using grid
search with cross-validation which is a general hyperparameter
optimization technique.

Step II - Sampling: In each iteration t, we probabilis-
tically determine which parameter vector among the M
meta-population to be updated based on parameter vectors’
novelties. The novelty is evaluated in terms of Euclidean dis-
tances from a vector to the vectors in the newest archive.
Specifically, first, the originality of each parameter vector in
S, θk

t , conditioned on current parameter vector archive, A, is
evaluated as

Ok
t = o

(
θk

t , W, A
)
= 1

|C|
∑
j∈C

||W. ∗
(
θk

t − θ j

)
||2, (11)

where, 1 ≤ k ≤ M, C = kNN(θk
t , A) = {θ1, . . . , θN′ },

kNN denotes k-nearest neighbors algorithm, and .* denotes the
element-wise multiplication operation. The purpose of kNN

is to select representative parameter vectors in A for evalu-
ating the novelty of θk

t . Intuitively, a small k can introduce
higher distance variance, while a large k means higher com-
putational cost. In our paper, we have conducted numerical
experiments to determine the optimal k value which is suffi-
cient for evaluating the novelty of a newly explored parameter
vector while avoiding high computational time. The intro-
duction of W, which is obtained from PSA, aims to revise
Euclidean distances between vectors. This revision is based
on the consideration that parameters with different sensitiv-
ity weights have different contributions to vector novelty.
Then, for each parameter vector in S, the novelty score which
determines the probability of being selected to be updated is
calculated as

Pk
t =

Ok
t∑M

j=1 Oj
t

. (12)

Pk
t tells us that selecting the parameter vectors with high

novelty scores can achieve directed or guided exploration.
Step III - Variation: In this step, variation is performed

on the selected parameter vector in Step II, θk
t , to generate

multiple workers. The function of these workers is explained
as follows: First, EDRL produces parameter vectors in the
neighborhood of θk

t , and then θk
t is updated by following the

direction determined by the population of the produced param-
eter vector workers. To obtain N workers, Gaussian noise is
applied to θk

t as follows

θ
i,k
t = θk

t + σεi
t i = 1, . . . , N, (13)

where, σ is a fixed noise standard deviation, εi
t ∼ N (0, I) and

I is an N-dimensional identity matrix.
Step IV - Gradient Estimation: In this step, the performance

and novelty gradients determined by the meta-population of
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generated vectors in Step III are approximated. For each
mutated parameter vector, θ

i,k
t , its fitness can be evaluated

via calculating the difference between the estimated dynamic
power and the real dynamic power. First, the power residual
caused by the mismatch between estimated parameters and
real parameters, ei,k

t , is calculated by substituting θ
i,k
t into (4).

Then, the reward is obtained by inversing ei,k
t :

Ri,k
t = r

(
θ

i,k
t , V, Y

)
= 1

ei,k
t

i = 1, . . . , N. (14)

Equation (14) indicates that as the residual decreases the
reward increases. Thus, the performance gradient of θk

t is
approximated via taking a sum of the sampled parameter
vector perturbations weighted by the reward:

�θ
et,k
t ≈ α

1

Nσ

N∑
i=1

Ri,k
t εi

t, (15)

where, α is a learning rate. In (15), �θ
et,k
t indicates a stochas-

tic reward experienced over a full iteration of multiple worker
interactions, which means the performance gradient relies on
multiple workers and this can effectively avoid the high vari-
ance brought by a certain single mutated vector. Note that the
calculated reward, Ri,k

t , is normalized through 1 to N before
performing the gradient approximation in (15).

For the novelty gradient, first, the novelty with respect to
each perturbed vector, Oi,k

t , is calculated using (11). Then, the
novelty gradient of θk

t is approximated as

�θ
er,k
t ≈ α

1

Nσ

N∑
i=1

Oi,k
t εi

t. (16)

Similar with Ri,k
t , Oi,k

t is normalized before computing the nov-
elty gradient. Intuitively, �θ

er,k
t indicates the direction which

the parameter identifier should follow to increase the average
originality of parameter vector distribution.

Step V - Gradient Combination: Using the computed
performance and novelty gradients with respect to θk

t , we can
balance exploitation and exploration by introducing a time-
varying dynamic weight, ωt. Thus, the overall gradient based
on which θk

t should be updated is computed as follows:

�θk
t = ωt�θ

et,k
t + (1− ωt)�θ

er,k
t . (17)

Intuitively, the algorithm follows the approximated gradient
in parameter-space towards directions that both exhibit novel
behaviors and achieve high rewards. A large ωt tends to
encourage θk

t to follow the performance gradient and restrain
it to follow the novelty gradient. In comparison, a small ωt

tends to aggressively guide θk
t to mutate to unseen parameter

space and hold back exploitation.
Step VI - Updating: After obtaining �θk

t , the updating of
θk

t is expressed as follows:

θk
t+1 = θk

t +�θk
t . (18)

θk
t+1 is then added into the archive A for updating the pre-

existing vector landscape. As more learned parameter vectors

Fig. 3. Detailed structure of the EDRL with an intelligent exploration
mechanism.

Algorithm 1 Updating ωt

if Rk
t+1 > Rt

b then
if ωt �= 0 then

ωt+1 ← min(1, ωt +�ω); Ct+1
b ← 0;

Rt+1
b ← Rk

t+1;
else

ωt+1 ← 1; Ct+1
b ← 0; Rt+1

b ← Rk
t+1;

end if
else

Ct+1
b ← Ct

b + 1;
end if
if Ct

b > Cset then
ωt+1 ← max(0, ωt −�ω); Ct+1

b ← 0;
end if

are saved into A, the base for evaluating future parameter vec-
tors’ novelty changes and stimulates the algorithm to discover
unexplored parameter space.
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In addition to updating θk
t and A in each iteration, the

dynamic weight, ωt, should also be updated for avoiding local
optima. To do this, first, the latest reward, Rk

t+1, which is
brought by θk

t+1, is calculated. We also define a “drag hand”,
Rt

b, to record the best reward among historical rewards. Then,
the dynamic weight in (17), ωt, is updated using Algorithm 1,
where, �ω denotes the weight updating rate, and Ct

b counts
the number of rewards that are less than Rt

b in succession.
Cset is a threshold which determines the frequency of updat-
ing ωt when the parameter vector is stuck in a local optimum.
Also, Ct

b and Rt
b are updated in each iteration, as presented

in Algorithm 1. Note that Step II to VI constitute the entire
operation in each iteration t.

V. CASE STUDY

In this section, the proposed parameter sensitivity anal-
ysis and parameter identification algorithms are validated
using numerical experiments. Before performing verification,
we firstly screen out the CMPLDWG parameters that are
necessary to be identified. This screening is based on the
consideration that CMPLDWG contains multiple types of
parameters, of which some parameters can be determined by
field measurements and engineering judgement. Specifically,
the transformer impedance, substation shunt capacitive sus-
ceptance, feeder impedance and capacitive susceptance can
be accurately calculated using transformer, capacitor and
feeder parameters [25], [26]. For the stalling and restarting
of induction motors, engineering judgement can be lever-
aged to estimate the settings [15], [27]. This is based on
the observation that the stalling or restarting of a large num-
ber of induction motors can cause abrupt current, voltage
and power changes [28], [29], which can be further cor-
roborated in [1]. Also, the tripping of a large number of
induction motors can cause sudden current decrease, power
decrease and voltage increase. Excluding the parameters which
can be accurately calculated using the electric power grid
modeling technique can significantly reduce the complexity
of parameter identification process. On the other hand, indis-
tinguishably identifying all CMPLDWG parameters can pose
an unnecessary computational burden on the proposed param-
eter identification algorithm. In our problem, 61 CMPLDWG
parameters are screened out for parameter identification, as
shown in Table III, and the remaining parameters are set with
default values.

In this case study, the Power System Simulator for
Engineering (PSS/E) and the ACTIVSg500 test case are
employed to generate voltage and power measurements
for parameter identification [30]. The fault-induced voltage-
recovery curves are shown in Fig. 4. MATLAB is used to
execute the processes of parameter sensitivity analysis and
parameter identification. The case study is conducted on a
standard PC with an Intel Xeon CPU running at 3.70 GHz
and with 32.0 GB of RAM.

A. Parameter Sensitivity Identification

To fully extract the sensitivity weights hidden in the
randomly-generated parameter samples and corresponding

Fig. 4. Fault-induced voltage-recovery curves at the load bus.

power residuals, first, we have created a comprehensive library
containing 40,000 parameter vector and residual pairs which
are divided into two sections, training dataset and test dataset,
for cross-validation. Note that the dataset size is determined
based on our numerical experiment result that once the dataset
size exceeds 16,000, the FWKL gives us stable extracted
parameter weights for different sets of the randomly selected
parameter vector and residual pairs. Generating each pair of
the parameter vector and the corresponding residual takes
about 0.3 seconds. Then, the tuning parameters of FWKL are
determined using grid search with cross-validation based on
the training and test datasets [31]. Finally, the FWKL algo-
rithm is applied to the entire dataset to conduct parameter
sensitivity analysis. Based on our sensitivity analysis result,
the load fraction parameters, the synchronous and subtransient
reactances of three-phase induction motors, and the exponen-
tial load torque coefficients of three-phase induction motors
have a significant effect on the load dynamics in the fault
event specified in Fig. 4, as shown in Fig. 5. The remaining
parameters have small or no effect on the dynamic procedure.
It should be noted that the values of parameter sensitivity
weights change according to specific dynamic events since
the weight vector in (9) partially depends on the voltage and
power measurements, which are determined by specific fault
cases. Therefore, PSA should be conducted on a case-by-case
basis to obtain more accurate parameter sensitivity weights for
specific fault events.

B. Parameter Identification

The extracted parameter sensitivity weights are integrated
into EDRL algorithm with IE to perform parameter identifi-
cation using given voltage and power measurements. There
are only a couple of published technical reports involved with
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TABLE III
REAL AND IDENTIFIED CMPLDWG PARAMETERS

Fig. 5. Sensitivity weights of WECC composite load model parameters.

WECC model parameter settings. In this paper, the numerical
intervals of parameters for randomly selecting initial values are
determined based on [32], [33], along with our experience on
deriving detailed mathematical representation of WECC com-
posite load model [22]. The numerical intervals are presented
in Table II, where, LB denotes lower bound and UB denotes
upper bound. Table III shows the real and corresponding iden-
tified parameter values of CMPLDWG. As can be observed,
the EDRL with IE can give us satisfying identified param-
eters. The identification accuracy is further corroborated by
Fig. 6, in which, the estimated active and reactive power curves
can closely fit the actual curves. While our approach is not
designed for online parameter identification, it is of impor-
tance to examine the computational time. In our case studies,
each iteration takes about 2 seconds.

It is also of significance to examine the collected best
reward Rt

b and dynamic weight ωt in each iteration, which
are shown in Fig. 7 and 8, respectively. In Fig. 7, the loss
corresponding to the collected best reward, et

b, is also shown
for examining parameter identification performance. It can be
seen that during Iteration 1 to 1226, the proposed parameter

identification approach simultaneously performs exploitation
and exploration, and the best reward increases continuously,
as shown in Fig. 7. The corresponding learning process in
this iteration range can be confirmed in Fig. 8, in which
ωt is firstly initialized as 0, once it stays invariant for 10
continuous iterations (Cset), it is decreased in a step size of
0.05 (�ω) to force the parameter identifier to follow more
closely with novelty gradient. Once an unseen better reward
occurs, ωt gradually increases to 1 to encourage the identi-
fier to act following the approximated performance gradient.
During Iteration 1 to 1226, although ωt alternatively decreases
and increases, it does not reach 0. From Iteration 1227 to 1717,
the parameter identifier is stuck in a local optimum and the
best reward stays invariant, as shown in Fig. 7. During this
iteration range, first, ωt is designed to gradually decrease to
0, which means the identifier is stimulated to explore more
aggressively in the unseen parameter space, as presented in
Section IV. This is verified by the variation of dynamic weight
ωt, as shown in Fig. 8, where, from Iteration 1227 to 1717, ωt

decreases to 0 and keep unchanged, which means the identi-
fier completely inhibits the performance gradient. At Iteration
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Fig. 6. The real power curves and the estimated power curves using the
identified parameters.

Fig. 7. The best reward and corresponding loss.

1718, the identifier discovers a parameter vector which can
give higher reward than any of the previous best rewards. As
expected, ωt immediately jumps to 1 to avoid possible sliding
out from the newly explored optimum with higher reward, due
to novelty exploration inertia. From Iteration 1718 to 2342,
the identifier simultaneously performs exploitation and explo-
ration as shown in Fig. 7, accordingly, ωt varies in the range
of a non-zero value to 1, as shown in Fig. 8. This is simi-
lar to the process which occurs in the range of Iteration 1 to
1226. Similar with the range of Iteration 1227 to 1717, in the
range of Iteration 2343 to 3324, ωt decreases to 0 and Rt

b stays
invariant, as shown in Fig. 8 and 7, respectively. At Iteration
3325, ωt jumps to 1 to force the identifier immediately per-
form exploitation, which is similar at Iteration 1718, as shown
in Fig. 8. Also, the best reward starts to increase at Iteration
3325, as shown in Fig. 7. The aforementioned cyclic process
continues to pursue better rewards as the number of iterations
increases, as shown in Fig. 7 and 8.

It is interesting to examine the efficaciousness of integrating
sensitivity weights into the IE module. To do this, we perform
additional CMPLDWG parameter identification using EDRL
with IE without revising parameter vector novelty scores.

Fig. 8. Variation of the time-varying dynamic weight.

Fig. 9. The introduction of parameter sensitivity weights into EDRL with
IE improves learning performance.

Fig. 9 shows two best reward collection curves corresponding
to EDRL with IE by integrating W and without integrating W,
respectively. As can be seen, the introduction of W acceler-
ates the exploitation and exploration in reaching the same best
reward.

It is also significant to compare the proposed parame-
ter identification approach with the presented algorithms in
previous works. First, we focus on comparing our algorithm
with the proposed parameter identification approach in [1],
which also aims to identify a large number of parameters.
The comparison shows that our approach can achieve better
parameter identification accuracy and does not rely on a priori
knowledge. And also, our method is easier to implement due to
the utilization of mathematical representation of CMPLDWG
model. In addition, the parameter identification accuracy using
the proposed approach in [1] significantly relies on a priori
knowledge about parameter setting. We have also compared
the performance of our proposed approach with that of two
other state-of-the-art optimization algorithms, Salp Swarm
algorithm (SSA) and deep Q-networks (DQN). SSA is a newly
proposed metaheuristic optimizer inspired by the process of
looking for a food source by salps. SSA has demonstrated
satisfying performance compared with other metaheuristic
algorithms [34]. DQN is a cutting-edge reinforcement learning
technique designed for sequential decision-making tasks [35].
The performance of the three algorithms (EDRL, SSA and
DQN) is shown in Fig. 10. It can be seen that our proposed
approach outperforms the other two methods in terms of the
average fitness error, et

b. In comparison, SSA shows the fastest
convergence rate. DQN takes the longest time to converge and
shows the largest average fitness error. It is also important to
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Fig. 10. Performance comparison of EDRL, SSA and DQN.

point out that DQN needs a significantly longer time to train
a stable actor with satisfying identification performance.

VI. CONCLUSION

This paper presents a parameter identification approach for
WECC composite load model. The proposed method employs
a data-driven nonlinear feature selection technique to perform
parameter sensitivity analysis, which avoids solving highly
complex analytical derivatives caused by the high order and
nonlinearity of differential equations of WECC composite load
model. After that, the proposed method utilizes a cutting-
edge approach inspired by evolutionary reinforcement learning
technique, which is hybridized with an intelligent exploration
mechanism to perform parameter identification. The parameter
sensitivity weights are innovatively embedded in the reinforce-
ment learning process to achieve efficient exploration. The
numerical experiments demonstrate that the proposed approach
can achieve promising accuracy. It is also shown that the
proposed identifier can escape from local optima through the
assistance of the intelligent exploration mechanism when stuck
in local optima. Finally, it is verified that the integration of
sensitivity weights into the reinforcement learning process
accelerates the learning rate.

While our proposed approach can perform parameter iden-
tification of WECC composite load model with satisfying
accuracy, the computational cost hinders its online appli-
cation. Also, the model complexity stands in the way of
widely applying WECC composite load model in the electric
power industry. Considering this, one prospect for research
on CMPLDWG is to simplify the model or develop a surro-
gate model to significantly reduce the computation cost and/or
model complexity, while keeping the primary characteristics
of WECC model.
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