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Abstract—The increasing penetration of distributed energy re-
sources (DERs) highlights the growing importance of microgrids
(MGs) in enhancing power system reliability. Employing elec-
tromagnetic transient (EMT) analysis in MGs becomes crucial
for controlling the rapid transients. However, this requires an
accurate but high-order model of power electronics and their
underlying control loops, complexifying the stability analysis
from the viewpoint of a higher control level. To overcome these
challenges, this paper proposes a large-signal order reduction
(LSOR) method for MGs with considerations of external control
inputs and the detailed dynamics of underlying control levels
based on singular perturbation theory (SPT). Specially, we
innovatively proposed and strictly proved a general stability
and accuracy assessment theorem that allows us to analyze the
dynamic stability of a full-order nonlinear system by only lever-
aging our derived reduced-order model (ROM) and boundary
layer model (BLM). Furthermore, this theorem furnishes a set
of conditions that determine the accuracy of the developed ROM.
Finally, by embedding such a theorem into the SPT, we propose
a novel LSOR approach with guaranteed accuracy and stability
analysis equivalence. Case studies are conducted on MG systems
to show the effectiveness of the proposed approach.

Index Terms—Microgrids, inverters, nonlinear, order reduc-
tion, singular perturbation, stability, electromagnetic transient

NOMENCLATURE

A. Abbreviations

BLM Boundary layer model
DER Distributed energy resource
EMT Electromagnetic transient
GAS Global asymptotic stability
ISS Input-to-state stability
LPF Low pass filter
LSOR Large-signal order reduction
MG Microgrid
PI Proportion-Integral
PLL Phase locked loop
PCC Point of common coupling
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QSS Quasi-steady-state
RMSE Root-mean-square error
ROM Reduced-order model
SPT Singular perturbation theory

B. Variables

P,Q Active and reactive powers
Vod, Voq dq-axis DER output voltages
Iod, Ioq dq-axis DER output currents
Vodf filtered d-axis DER output voltage
ΦPLL Integral of filtered d-axis DER output voltage
δ Phase angle
ωPLL Angular frequency measured by PLL
ΦP, ΦQ Integrals of errors between active/reactive

power and power commands
P ∗, Q∗ Active and reactive power commands
I∗ld, I

∗
lq dq-axis inductor current commands

ω∗ Angular frequency command generated by
droop controller

ωn Angular frequency setpoint
V ∗
oq DER output voltage command generated by

droop controller
Voq,n DER output voltage setpoint
Φd Integral of error between measured angular

frequency and its command
Φq Integral of error between DER output voltage

and its command
Γd,Γq Integrals of errors between dq-axis inductor

currents and their commands
V ∗
ld, V

∗
lq dq-axis inductor voltage commands

Ild, Ilq dq-axis inductor currents
Vbd, Vbq dq-axis bus voltages
x Slow state variables of the MG system
z Fast state variables of the MG system
u External control input of the MG system
y System output of the MG system
x̂ Solution of the ROM
ŷ Solution of the BLM
Ex Error vector between the slow states and the

solution of the ROM
Ey Error vector between the fast states and the

solution of the BLM
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C. Parameters

OMflag Switch between grid-tied and islanded mode:
1-grid-tied mode; 2-islanded mode

ωc Corner frequency of LPF for instantaneous
powers

ωcPLLi Corner frequency of LPF for DER output
voltage

KP,PLL Proportional gain of PI controller in PLL
KI,PLL Integral gain of PI controller in PLL
KI,P Integral gain of PI controller in power con-

troller
KP,P Proportional gain of PI controller in power

controller
DP P -ω droop gain
DQ Q-V droop gain
KI,V Integral gain of PI controller in voltage con-

troller
KP,V Proportional gain of PI controller in voltage

controller
ωn Nominal angular frequency
Lf Inductance of LC filter
KI,C Integral gain of PI controller in current con-

troller
KP,C Proportional gain of PI controller in current

controller
Rf , Rc Parasitic resistances of the inductors
Cf Capacitance of LC filter
Rd Dumping resistor of LC filter
ε Perturbation coefficient
ε∗ Threshold of ε below which the error of ROM

converges asymptotically
ε∗∗ Threshold of ε below which the error of ROM

converges within a finite time T
n,m, p Dimensions of slow/fast states and input
τ Fast time scale variable defined as t/ε
T Finite error convergence time if ε < ε∗∗

I. INTRODUCTION

M ICROGRIDS (MGs) are localized small-scale power
systems composed of interconnected loads and dis-

tributed energy resources (DERs) in low-voltage and medium-
voltage distribution networks. It can be operated in grid-
connected and islanded modes [1]–[6]. The high penetra-
tion of low-inertia DERs makes the dynamic response of
MGs different from conventional networks dominated by syn-
chronous machines. This low-inertia characteristic highlights
the importance of dynamic modeling, stability analysis, and
control studies of MGs in the electromagnetic transient (EMT)
time scale [7]–[9]. To precisely capture the comprehensive
transient dynamics of MGs in a hierarchical control structure,
detailed dynamic models of the lower control levels such as
primary and zero-control levels, and the impact of external
input from higher control levels such as secondary control,
need to be taken into account. However, the high-order nature
of these detailed dynamics of the underlying control structures
makes it intractable to analyze the stability of MGs with
such a complex dynamic model [10]–[14]. In addition, an-

other critical challenge brought by considering the underlying
controllers is the two-time-scale behavior of MGs due to the
different evolutionary velocities of different state variables,
which leads to a stiff differential equation problem [15]. In
the dynamic simulation of MGs, numerically solving this stiff
problem requires extremely small time steps, which results in
an unmanageable computational complexity [16].

To solve the above problems, model order reduction tech-
niques have been studied and applied to power system anal-
yses. In [17], [18], an aggregate equivalent model was de-
veloped for the order reduction of MGs by assuming similar
inverter dynamics. Kron reduction was adopted to simplify
the network of MGs in [19]. In [20], the authors used a
balanced truncation method for DC MGs described by a linear
model with inhomogeneous initial conditions. Although these
methods can effectively simplify the MG model, the time-scale
separation problem aroused by the consideration of underlying
control levels for EMT analysis is still not solved.

Given the inherent two-time-scale property of MGs, singular
perturbation theory (SPT) is a suitable technology for this
purpose. The SPT is a mathematical framework that focuses
on analyzing problems with a parameter, where the solutions
of the problem at a specific limiting value of the parameter
exhibit distinct characteristics compared to the solutions of the
general problem, resulting in a singular limit. It facilitates the
separation of the system into a reduced-order model (ROM)
that captures the slow states, and a boundary layer model
(BLM) that represents the errors between fast and quasi-
steady states. It is worth noting that the terms “slow” and
“fast” refer to the transient evolutionary velocity of states in
this context. Unlike conventional model reduction methods
that simply neglect certain state variables, SPT preserves the
characteristics of fast dynamics by integrating them into the
“slow” states, as advocated by [21]. Additionally, SPT has the
advantage of converting the original stiff problem into a non-
stiff problem, resulting in improved computational efficiency.
Due to the above advantages, the SPT has been widely used
in power system studies. The transient stability of type-3
wind turbines is investigated in [22] by applying the SPT
and Lyapunov methods and taking into account the dynamics
of phase-locked loop (PLL) and current control. In [23],
a model-order reduction and dynamic aggregation strategy
are proposed for grid-forming inverter-based power networks.
More reduced-order models for grid-forming virtual-oscillator-
controlled inverters with nested current and voltage-control
loops, and current-limiting action for overcurrent protection
by using the SPT are outlined in [24]. In [25], a linear active
disturbance rejection control scheme for two-mass systems
is developed based on the SPT. In the context of the MG
order reduction problem, a spatiotemporal model reduction
method of MGs using SPT and Kron reduction was proposed
in [26], nonetheless, the method is not generic enough. In
[27], [28], a linear SPT was applied to small-signal models of
MGs. A small-signal ROM considering coupling dynamics is
developed for autonomous wind-solar multi-MGs based on the
SPT in [29]. However, since the above studies use the small-
signal model, the results only hold in the neighborhood of a
stable equilibrium point.
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The above studies focus on the development of the reduced-
order MG modeling, whereas the stability assessment based on
the derived ROM is not included. To fill this gap, the system
order is reduced to simplify the stability analysis by neglecting
the underlying voltage controller in [30] at the expense of
losing fast dynamics. In [31], the nonlinear Lyapunov stability
of DC/AC inverters with different ROMs was studied. A
method for simplifying the stability assessment was developed
and applied to an islanded MG with droop control by using
inverter angles in [32]. Nevertheless, it was demonstrated that
such a simplification process could affect the accuracy of
ROMs in [33]–[35]. Moreover, to our best knowledge, the
existing studies do not consider the impact of external inputs
such as power commands and voltage frequency references
on MG stability analysis. A typical way is to consider the
unforced system by neglecting the inputs to study the internal
stability. However, even though the unforced system is stable,
a continuous input signal can render the system unstable. In
[36], a stability assessment criterion that used the input-to-state
stability (ISS) of ROM and global asymptotic stability (GAS)
of BLM was proposed to analyze the total stability of the
original system. This method is generic for arbitrary singular
perturbed systems under certain conditions, nevertheless, the
convergence of the error between reduced and original models
is not theoretically analyzed, which hinders the accuracy
evaluation of ROMs. This work is further extended in [37],
where the stability and accuracy issues are simultaneously
proved, however, the effect of external inputs is still not
analyzed.

To overcome the above challenges, this paper proposes
a novel large-signal order reduction (LSOR) strategy for
inverter-based MGs with detailed dynamics of the underlying
control levels in the EMT time scale. Firstly, a general theorem
for analyzing the dynamic stability of the full-order model
by only alternatively assessing the stability of its derived
ROM and BLM is proposed. A key point is that we consider
ISS to quantify the system’s response to external inputs and
unify internal and external stability. In particular, by assuming
the ROM to be ISS, the unforced ROM to be exponentially
stable, and BLM to be uniformly GAS, one can prove that
the original system is totally ISS. Then, we develop the
conditions that guarantee the accuracy of ROMs for both
slow and fast dynamics. Finally, by embedding the proposed
stability and accuracy assessment theorem into the large-signal
SPT, an improved LSOR algorithm is proposed for MGs.
Strict mathematical proof is provided to illustrate that the
proposed order reduction technique is generic for arbitrary
dynamic systems. The main contributions can be summarized
as follows:

• We propose a general theorem that allows us to assess
the large-signal stability of MGs with detailed dynamics
of underlying controllers in the EMT time scale by only
analyzing their ROMs and BLMs.

• A set of accuracy criteria is developed, under which the
error between the reduced and original models is bounded
and converges as the perturbation coefficients decrease.

• The impact of external control input from the higher

control level on the above stability and accuracy analyses
is studied with strict mathematical proof.

• The stability and accuracy assessment synthesis is em-
bedded into the LSOR method to improve the model
accuracy via a feedback mechanism, which automatically
tunes the bounds of perturbation coefficients as an index
for identifying the slow and fast dynamics.

The rest of the paper is organized as follows. Section II
describes the large-signal mathematical model of the stud-
ied MG system. Section III introduces the general singular
perturbation theory and proposes our stability and accuracy
assessment theory. Section IV gives the simulation validation
of the proposed method. Section V concludes the paper.

II. LARGE-SIGNAL MODELING OF INVERTER-BASED MGS

This section introduces a nonlinear model of the studied
MG system with detailed primary and zero-control levels.
Depending on the research objectives, control strategies, and
operation modes, MGs may have different models. According
to [27], the transient response velocity of line dynamics is
much faster than the slow ones in DERs due to the small line
impedance. Moreover, the state equations are fully decoupled
between DERs and lines. As a result, the line dynamics can be
neglected. Therefore, this section focuses on the modeling of
DERs, which are the main dynamic components in an inverter-
based MG.

A general control diagram of DERs is shown in Fig. 1. The
model can switch between two subsystems according to the
MG operation modes. In grid-tied mode, OMflag switches to
1, then the voltage source inverter is controlled by the power
controller and current controller to follow the power command
(P ∗, Q∗). The MG bus voltage and system frequency are
maintained by the main grid. In islanded mode, OMflag is
set to 0, and the MG voltage and frequency are regulated by
the DERs using droop controllers. According to Fig. 1, the
mathematical model can be derived for each component where
i = 1, . . . , N denotes the index of N DERs in the MG.

A. Average Power Calculation
The generated active and reactive power can be calculated

using the transformed output voltage vodq and current iodq.
Using a low-pass filter (LPF) with the corner frequency ωc,
we can obtain the filtered instantaneous powers as follows,

Ṗi = −Piωci + 1.5ωci (VodiIodi + VoqiIoqi) , (1a)

Q̇i = −Qiωci + 1.5ωci (VoqiIodi − VodiIoqi) . (1b)

B. Phase Lock Loop
The model of PLL is the same as that established in [27]

as follows,

V̇odfi = ωcPLLiVodi − ωcPLLiVodfi, (2a)

Φ̇PLLi = −Vodfi. (2b)

In grid-tied mode, the inverter output phase is synchronized
to the main grid using PLL, therefore the derivative of phase
angle δi is set to ωPLLi:

δ̇i = ωPLLi = 377−KP,PLLiVodfi +KI,PLLiΦPLLi. (3)
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Fig. 1. The block diagram of voltage-sourced inverter-based DER with underlying control loops.

In islanded mode, the phase angle of the first inverter can
be arbitrarily set as the reference for the other inverters:

δ̇i = ωPLL1 − ωPLLi. (4)

C. Power Controllers

In grid-tied mode, the output power of DER is regulated by
the power controller using the PI control method. The input
references are the commanded real and reactive powers:

Φ̇Pi = Pi − P ∗
i , (5a)

I∗lqi = KI,PiΦPi +KP,PiΦ̇Pi, (5b)

Φ̇Qi = Qi −Q∗
i , (5c)

I∗ldi = KI,PiΦQi +KP,PiΦ̇Qi. (5d)

D. Voltage Controllers and Droop Controllers

In islanded mode, a DER has no reference inputs from the
main grid. Therefore, it must generate its only voltage and
frequency references using droop controllers as follows,

ω∗
i = ωni −DPiPi, (6a)

V ∗
oqi = Voq,ni −DQiQi. (6b)

These references will be used as the set points for voltage
controllers. Two PI controllers are adopted for the voltage
controllers as follows,

Φ̇di = ωPLLi − ω∗
i , (7a)

I∗ldi = KI,ViΦdi +KP,ViΦ̇di, (7b)

Φ̇qi = V ∗
oqi − Voqi, (7c)

I∗lqi = KI,ViΦqi +KP,ViΦ̇qi. (7d)

E. Current Controllers

The PI controllers are adopted for current controllers. They
generate the commanded voltage reference V ∗

ldqi according to

the error between the inductor currents reference I∗ldqi and its
feedback measurements Ildqi:

Γ̇di = I∗ldi − Ildi, (8a)

V ∗
ldi = −ωniLfiIlqi +KI,CiΓdi +KP,CiΓ̇di, (8b)

Γ̇qi = I∗lqi − Ilqi, (8c)

V ∗
lqi = −ωniLfiIldi +KI,CiΓqi +KP,CiΓ̇qi. (8d)

F. LC Filters and Coupling Inductors

The dynamical models of LC filters and coupling inductors
are as follows,

İldi = (−RfiIldi + Vldi − Vodi) /Lfi + ωniIlqi, (9a)

İlqi = (−RfiIlqi + Vlqi − Voqi) /Lfi − ωniIldi, (9b)

İodi = (−RciIodi + Vodi − Vbdi) /Lci + ωniIoqi, (9c)

İoqi = (−RciIoqi + Voqi − Vbqi) /Lci − ωniIodi, (9d)

V̇odi = (Ildi−Iodi) /Cfi+ωniVoqi +Rdi(İldi − İodi), (9e)

V̇oqi = (Ilqi−Ioqi) /Cfi−ωniVodi +Rdi(İlqi − İoqi). (9f)

In conclusion, when the MG system is operating in grid-tied
mode, the mathematical model can be represented by equations
(1)-(3), (5) and (8)-(9). In islanded mode, the MG model can
be represented by equations (1)-(2), (4) and (6)-(9).

III. IMPROVED LSOR BY EMBEDDING STABILITY AND
ACCURACY ASSESSMENT THEOREM

In this section, we propose an improved LSOR method
together with stability and accuracy assessment synthesis.
Firstly, we briefly present the SPT-based LSOR approach.
Then a novel large-signal stability and accuracy assessment
theorem with consideration of external control input is pro-
posed. Finally, we improve the LSOR algorithm by embedding
the stability and accuracy assessment theorem, so that it
can guarantee the accuracy of derived ROM and efficiently
evaluate the stability of original models. The proposed LSOR
strategy is essentially generic and is suitable for the above MG
model introduced in Section II.
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A. LSOR Approach using the SPT for MGs

Due to the two-time-scale property, the dynamics of MGs
can be classified as slow and fast dynamics according to the
transient velocities. Based on this phenomenon, here we first
rewrite the mathematical model introduced in Section II as
the general singular perturbed form (10). Then, the detailed
algorithm, theoretical supports, and case studies illustrating
the identification of slow and fast will be proposed in the
later sections.

ẋ(t) = f (x(t), z(t),u(t), ε) , (10a)
εż(t) = g (x(t), z(t),u(t), ε) , (10b)

where all the state variables in (1)-(9)
are collected in the vector

[
x⊤ z⊤

]⊤
=

[Pi Qi Vodfi ΦPLLi δi ΦPi ΦQi Γdi Γqi Ildi Ilqi Vodi Voqi

Iodi Ioqi]
⊤
(i = 1, . . . , N) in grid-tied mode or

[
x⊤ z⊤

]⊤
=

[Pi Qi ΦPLLi Vodfi δi Φdi Φqi Γdi Γqi Ildi Ilqi Vodi Voqi

Iodi Ioqi]
⊤
(i = 1, . . . , N) in islanded mode, respectively;

ẋ ∈ Rn and ż ∈ Rm denote the derivatives of slow and fast
states, respectively; the external control input is denoted as
u = [P ∗

i Q∗
i ]

⊤ in grid-tied mode or u = [ωni Voq,ni]
⊤ in

islanded mode, respectively; ε denotes the small parameters
in MGs such as capacitances and inductances named as
perturbation coefficient and its identification method will be
proposed in the later sections; f and g are locally Lipschitz
functions on their arguments. For simplicity, we neglect the
notation of time-dependency (t) in the rest of this paper.

The two-time-scale characteristic of MGs motivates the
adoption of SPT. The main idea of SPT is to freeze the fast
dynamics and degenerate them into static equations. Thus, the
ROM can be obtained by substituting the solutions of the static
equations into the slow dynamic equations. Since ε is small,
the fast transient velocity ż = g/ε can be much larger than the
slow dynamics ẋ. To solve this two-time-scale problem, we
can set ε = 0, then equation (10b) degenerates to the following
algebraic equation,

0 = g (x, z,u, 0) . (11)

If equation (11) has at least one isolated real root and
satisfies the implicit function theory, then for each argument,
we have the following closed-form solution,

z = h (x,u) . (12)

Substitute equation (12) into equation (10a) and let ε = 0,
we have a quasi-steady-state (QSS) model,

ẋ = f (x,h (x,u) ,u, 0) . (13)

Note that the order of the QSS system (13) drops from n+m
to n. The inherent two-time-scale property can be described
by introducing the BLM. Define a fast time scale variable
τ = t/ε, and a new coordinate y = z− h(x,u). In this new
coordinate, equation (10b) is rewritten as

dy

dτ
= g (x,y + h (x,u) ,u, ε)

− ε

[
∂h

∂x
f (x,y + h (x,u) ,u, ε) +

∂h

∂u
u̇

]
. (14)

Let ε = 0, we obtain the BLM as follows,

dy

dτ
= g (x,y + h (x,u) ,u, 0) . (15)

B. Stability and Accuracy Assessment Theorem

In this subsection, we propose a criterion to assess the
stability of the original system and the accuracy of ROM
and BLM. We first introduce a few technical definitions and
assumptions below.

Definition 1: Class K function α : [0, t) → [0,∞) is a
continuous strictly increasing function with α(0) = 0. Further,
if t = ∞ and limr→∞ α(r) = ∞, then α is said to belong to
class K∞ function.

Definition 2: Class KL function β : [0, t)×[0,∞) → [0,∞)
is a continuous function satisfying: for each fixed s, the
function β(r, s) belongs to class K; for each fixed r, the
function β(r, s) is decreasing with respect to s and β(r, s) → 0
for s → ∞.

Considering the impact of external inputs on the stability of
MGs, we define the ISS as follows.

Definition 3 (ISS): Consider such a nonlinear system

ẋ = f̃ (x, v1, v2) (16)

where x ∈ Rn is the state vector, v1 ∈ Rm, v2 ∈ Rp are
input vectors, and f̃ is locally Lipschitz on Rn × Rm × Rp.
The system (16) is ISS with Lyapunov gains αv1 and αv2 of
class K, if there exists a class KL function β such that for
x (0) ∈ Rn and bounded inputs v1, v2, the solution of (16)
exists and satisfies

∥x(t)∥ ⩽ β (∥x(0)∥ , t) + αv1 (∥v1∥) + αv2 (∥v2∥) . (17)

The above definition indicates that an MG system is ISS
when all the trajectories are bounded by some functions of
the input magnitudes. Then we give the following three as-
sumptions which are the sufficient conditions for the theorem.

Assumption 1 (Growth conditions): The functions f , g, and
their first partial derivatives are continuous and bounded with
respect to (x, z,u, ε); h and its first partial derivatives ∂h/∂x,
∂h/∂u is locally Lipschitz; and the Jacobian ∂g/∂z has
bounded first partial derivatives with respect to its arguments.

Assumption 2 (Stability of ROM): The ROM (13) is ISS
with Lyapunov gain α̂x, and its unforced system has an
exponentially stable equilibrium at the origin.

Assumption 3 (Stability of BLM): The origin of the BLM
(15) is a GAS equilibrium, uniformly in x ∈ Rn, u ∈ Rp.

Remark 1: The conditions in Assumption 1 are commonly
satisfied for most MGs [34]. Inspired by [36], we propose the
stability and accuracy assessment of MGs as the following
theorem. Note that the conditions, results and proof of our
theorem and [36] are different. In [36], only the stability
of the original system is proved, nonetheless, the accuracy
of the ROM and BLM is not analyzed, which is of vital
importance to make sure that the derived reduced-order model
is correct. However, the addition of accuracy analysis arouses
new challenges in the proof which cannot be solved by directly
using [36]. Therefore, we add a constraint condition on the

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2024.3357481

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Iowa State University Library. Downloaded on May 13,2024 at 02:16:49 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE FOR POSSIBLE PUBLICATION. COPYRIGHT MAY BE TRANSFERRED WITHOUT NOTICE 6

transient speed in Assumption 2 and propose a new proving
method for our theorem.

Theorem 1: If the MGs system (10), its ROM (13) and the
BLM (15) satisfy the Assumptions 1-3, then for each pair
of (µ, ξ), there exists a positive constant ε∗, such that for
all t ∈ [0,∞), max {∥x(0)∥ , ∥y(0)∥ , ∥u∥ , ∥u̇∥} ⩽ µ, and
ε ∈ (0, ε∗] the errors between the solutions of the original
MGs system (10) and its ROM (13) and BLM (15) satisfy

∥x(t, ε)− x̂(t)∥ = O(ε), (18)
∥z(t, ε)− h(x̂(t),u(t))− ŷ(τ)∥ = O(ε), (19)

where x̂(t) and ŷ(τ) are the solutions of ROM (13) and BLM
(15), respectively. ∥x− x̂∥ = O(ε) means that ∥x− x̂∥ ⩽
k ∥ε∥ for some positive constant k. Furthermore, for any given
T > 0, there exists a positive constant ε∗∗ ⩽ ε∗ such that for
t ∈ [T,∞) and ε < ε∗∗, it follows uniformly that

∥z(t, ε)− h(x̂(t),u(t))∥ = O(ε). (20)

Moreover, there exist class KL functions βx, βy , a Lya-
punov gain αx of class K and positive constants ξ, such that
the solutions of the original MGs system (10a) and (14) exist
and satisfy

∥x(t, ε)∥ ⩽ βx (∥x(0)∥ , t) + αx (∥u∥) + ξ, (21)
∥y(t, ε)∥ ⩽ βy (∥y(0)∥ , τ) + ξ. (22)

Remark 2: Theorem 1 indicates large-signal stability by
observing that µ can be arbitrarily large. This is more com-
prehensive than the small-signal stability studied in [27].
Moreover, the errors between the solutions of reduced and
original MGs should be small and bounded to guarantee
accuracy. (18) and (19) show that for sufficiently small ε,
these errors tend to be zero. Equation (20) means that for
small enough ε, the solution ŷ of the BLM decays to zero
exponentially fast in time T , so that the fast solutions can be
estimated by only QSS solutions h(t, x̄(t)) after time T .

Remark 3: According to the theorem, if the ROM is ISS
and BLM is GAS, then the original system is stable as
shown in (21) and (22). Moreover, in real physical systems,
one challenge of SPT is how to identify the slow and fast
dynamic states. A commonly used approach is the knowledge
discover-based method that relies on expert knowledge for
specific domains. For example, in MGs, some small parasitic
parameters such as capacitances, inductances, and small time
constants, can be selected as the perturbation coefficients ε.
The states with respect to these small ε are identified as fast
states. This conventional empirical identification method falls
short of efficiency and accuracy. Therefore, we propose a
more efficient and accurate method to identify the slow/fast
dynamics by finding the bound of ε in the following proof.

Proof: The proof of the theorem is conducted in three steps.
First, we prove the GAS of y (22). This result will then be
used in proving the accuracy of ROM and BLM (18)-(20).
Finally, we provide the proof of ISS of x (21).

Using the converse theorem and Assumption 3, there exists
a smooth function V1(x,y,u) : Rn × Rm × Rp → R⩾0, and
three class K∞ functions α1, α2 and α3, such that

α1 (∥y∥) ⩽ V1(x,y,u) ⩽ α2 (∥y∥) , (23)
∂V1

∂y
g(x,y + h(x,u),u, 0) ⩽ −α3 (∥y∥) . (24)

Using Lemma 1 and Lemma 2 in [36] together with (23) and
(24), it can be verified that there exists a class K function αy , a
class KL function βy and a continuous nonincreasing function
γy: R⩾0 → R⩾0, such that for essentially bounded inputs and
ε ⩽ γy (max {∥x∥ , ∥y(0)∥ , ∥u∥ , ∥u̇∥}), the solution of (14)
exists for all t ⩾ 0 and satisfies

∥y(t, ε)∥ ⩽ βy (∥y(0)∥ , τ) + αy(ε). (25)

Note that at this step we do not know the boundedness of
x. To use the inequality (25), we apply the causality and
signal truncations. Define a positive constant µ̃ satisfying
µ̃ > βx(µ, 0) + αx(µ) + ξ. It can be verified that µ < µ̃.
Considering the continuity for a given initial condition, we
can define T > 0 as the upper bound of [0, T ) within which
∥x∥ ⩽ µ̃. Since γy is nonincreasing, it follows that

γy(µ̃) < γy(µ)⩽γy(max {∥x(0)∥, ∥y(0)∥, ∥u∥, ∥u̇∥}),
(26)

γy(µ̃) ⩽ γy(∥x∥). (27)

For ε ⩽ ε1 := γy(µ̃), (26) and (27) yield that ε ⩽
γy (max {∥x∥ , ∥y(0)∥ , ∥u∥ , ∥u̇∥}) holds for all t ∈ [0, T ).
However, from the definition of µ̃, there must exist a positive
constant η, such that ∥x∥ < µ̃ for all t ∈ [0, T + η). This
contradicts that T is maximal, so T = ∞. Therefore, there
exists an ε2 satisfying αy(ε2) = ξ, such that (22) holds for all
t ⩾ 0, and ε ⩽ min{ε1, ε2}.

Then, we prove the second step about the accuracy of the
ROM (18)-(20). Define the error between solutions of reduced
and original slow dynamics as Ex = x − x̂. When ε = 0,
y = z− h(x,u) = 0. Then, we have

Ėx = f(Ex, 0,u, 0) + ∆f , (28)

where ∆f=[f(x̂+Ex, 0,u, 0)−f(x̂, 0,u, 0)−f(Ex, 0,u, 0)]
+ f(x,y,u, ε) − f(x, 0,u, 0). According to Assumption 1, it
follows that

∥∆f∥ ⩽ℓ1 ∥Ex∥2 + ℓ2 ∥Ex∥ ∥x̂∥
+ ℓ3βy (∥y(0)∥ , τ) + ℓ3ξ + ℓ4ε, (29)

for some positive constants ℓ1, ℓ2, ℓ3, ℓ4. The last term in
system (28) can be viewed as a perturbation of

Ėx = f(Ex, 0,u, 0). (30)

Since the origin of the system (30) is exponentially stable
with u = 0, using the converse theorem, there exist a Lya-
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punov function V2(Ex), and positive constants c1, c2, c3, c4,
for which it follows that

c1 ∥Ex∥2 ⩽ V2(Ex) ⩽ c2 ∥Ex∥2 , (31)
∂V2

∂Ex
f(Ex, 0,u, 0) ⩽− c3 ∥Ex∥2 , (32)∥∥∥∥ ∂V2

∂Ex

∥∥∥∥ ⩽ c4 ∥Ex∥ . (33)

Using (22), (29) and (31)-(33), the Lyapunov function of (30)
along the trajectory of (28) satisfies

V̇2 =
∂V2

∂Ex
f(Ex, 0,u, 0) +

∂V2

∂Ex
∆f

⩽− c3 ∥Ex∥2 + c4 ∥Ex∥
[
ℓ1 ∥Ex∥2 + ℓ2 ∥Ex∥ ∥x̂∥

+ℓ3βy (∥y(0)∥ , τ) + ℓ3ξ + ℓ4ε] . (34)

For ∥Ex∥ ⩽ c3/(2c4ℓ1), using Assumption 2, it follows that

V̇2 ⩽− 2
{
c3 − c4ℓ1

[
β̂x (∥x̂(0)∥ , t) + α̂x (∥u∥)

]}
V2

+ 2 [ℓ3ε+ ℓ3ξ + ℓ4βy (∥y(0)∥ , τ)]
√
V2

⩽− 2
{
ℓa − ℓbβ̂x (∥x̂(0)∥ , t)

}
V2

+ 2 [ℓcε+ ℓdβy (∥y(0)∥ , τ)]
√
V2, (35)

where 0 < ℓa ⩽ c3−c4ℓ1α̂x (sup ∥u∥), ℓc ⩾ ℓ3(1+ξ/ε) > 0,
and ℓb, ℓd > 0. Using the comparison lemma, we have

W2(t) ⩽ϕ(t, 0)W2(0)

+

∫ t

0

ϕ(t, s) [ℓcε+ ℓdβy (∥y(0)∥ , τ)]ds, (36)

where W2 =
√
V2 and

|ϕ(t, s)| ⩽ ℓee
−ℓf t, for ℓe, ℓf > 0. (37)

Because ∫ t

0

e−ℓf tβy (∥y(0)∥ , τ) ds = O(ε), (38)

it can be verified that W2(t) = O(ε). Then it follows that
Ex(t, ε) = O(ε), and this means that (18) holds.

Since we have already verified that (22) holds in the first
step, then by Assumption 3, it follows that

Ey(t, ε) = ∥z(t, ε)− h(x̂(t, ε),u(t))− ŷ(τ)∥
= ∥y(t, ε)− ŷ(τ)∥ ⩽ ∥y(t, ε)∥+ ∥ŷ(τ)∥ (39)

⩽ βy (∥y(0)∥ , τ)+αy(ε)+β̂y (∥ŷ(0)∥ , τ) = O(ε)

for given initial points and all t ⩾ 0. This proves (19).
According to Assumption 3, ŷ(τ) = β̂y (∥y(0)∥ , τ) → 0 as
ε → 0. Thus, the term ŷ(τ) = O(ε) for all t ⩾ T > 0 if ε is
small enough to satisfy

β̂y(∥y(0)∥ , τ) ⩽ kε (40)

Let ε∗∗ and T denote a solution of (40) with equal sign.
Subsequently, (20) holds for all ε ⩽ ε∗∗ uniformly on [T,∞).

Finally, we prove the ISS of original slow dynamics. Since

∥x(t, ε)∥ − ∥x̂(t)∥ ⩽ ∥x(t, ε)− x̂(t)∥ = O(ε), (41)
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there exist some class KL function βx, class K function α and
a small positive constant ε3, such that the solution of (10a)
exists for all t ⩾ 0 and ε ⩽ ε∗ := min {ε1, ε2, ε3} satisfying

∥x(t, ε)∥ ⩽ ∥x̂(t)∥+O(ε)

⩽ β̂x (∥x̂(0)∥ , t) + α̂x (∥u∥) +O(ε)

⩽ βx (∥x(0)∥ , t) + αx (∥u∥) + ξ. (42)

This completes the proof of (21). □

C. Stability and Accuracy Assessment Embedded LSOR

This subsection develops a novel LSOR method by embed-
ding the above theorem. The overall flowchart is shown in Fig.
2 and the detailed algorithm is proposed in Alogrithm 1.

Algorithm 1 provides a method to identify the slow and fast
dynamics of a system with guaranteed stability and accuracy.
The feasibility of Algorithm 1 relies on the inherent singularly
perturbed nature of inverter-based MGs, indicating the exis-
tence of at least one significant gap among the dynamic speeds
of the states. To quantitatively analyze the relationship between
the gap size and dynamic performance of the reduced model,
we have introduced an additional threshold ε∗∗ in Algorithm 1,
whose efficacy has been proved in Theorem 1. The relationship
between ε∗ and ε∗∗ is illustrated in Fig. 3. A numerical case
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study is given in the next section to demonstrate how ε∗∗ helps
balance the accuracy and computational cost.

On the other hand, it is also possible that different partitions
of fast and slow dynamics result in similar performance of the
ROM. Choosing more dynamics as fast ones can reduce the
order of the ROM and improve the computational efficiency,
but it can also compromise the accuracy. Therefore, a careful
trade-off should be made according to the engineering require-
ments. For instance, in the MG control problem, minimizing
the computational time of solving differential equations is
not a priority. In this case, as long as the computational
speed meets the sampling rate requirement to avoid input time
delays, it is preferable to use a higher-order but more accurate
ROM to design the controller [38]. On the other hand, if the
modeling error tolerance is higher while the computational
burden is more critical, such as in some qualitative analysis,
then it is suggested to consider more states as fast ones [26].

This algorithm is designed for MGs with two-time-scale
properties, however, no basic assumptions of the MGs are
required. Therefore, the proposed method can be applied to
arbitrary dynamic systems.

Algorithm 1 Stability/Accuracy Assessment Embedded LSOR
1: Choose the smaller parameters dominating the transient

velocity as ε. The states with respect to ε are identified
as fast states, while the others as slow states.

2: procedure ROM AND BLM DERIVATION
3: Let ε = 0, solve the algebraic equation (11) to obtain

the isolated QSS solutions z = h (x,u)
4: Substitute z into (10a), obtaining the ROM (13)
5: Derive the BLM using equation (15).
6: end procedure
7: procedure STABILITY ASSESSMENT
8: if Assumption 2 and 3 are satisfied then
9: Go to next procedure

10: else
11: Return to Step 1 to re-identify slow/fast dynamics.
12: end if
13: end procedure
14: procedure CALCULATE THE BOUND OF ε
15: Calculate ε∗ = min {ε1, ε2, ε3} according to proof.
16: Calculate ε∗∗ by solving equation (40) with equal sign.
17: end procedure
18: procedure ACCURACY ASSESSMENT
19: if ε ⩽ ε∗ then
20: if ε ⩽ ε∗∗ then
21: z = h(x̂,u) is the solution of fast dynamics
22: else
23: Use z = h(x̂,u)+ŷ by solving the BLM (15).
24: end if
25: else
26: Return to Step 1 to re-identify slow/fast dynamics
27: end if
28: end procedure
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Fig. 4. The diagram of modified IEEE-37 bus system.

IV. CASE STUDY

A. Simulation Setup

The proposed method is tested on a modified IEEE-37 bus
MG, which can be operated in grid-tied or islanded modes
as shown in Fig. 4. According to [26], seven inverters are
connected to buses 15, 18, 22, 24, 29, 33, and 34. When the
point of common coupling (PCC) is closed, the MG is operated
in grid-tied mode. Otherwise, it is operated in islanded mode.

We first let the MG be operated in grid-tied mode. In order
to analyze the detailed dynamic properties of both slow and
fast dynamics as well as compare our method with the small-
signal order reduction approach, a single bus of interest (bus
34) is chosen to show its dynamic responses after power
command (input) changes for clearance. Then, a simulation
is conducted in islanded mode to show the dynamic responses
of multiple buses with DERs when a load sudden change is
given to verify its effectiveness against large disturbances. The
detailed load and line parameter settings can be found in [26].

B. Performance in Grid-tied Mode and Comparison With
Small-Signal ROM

We start by defining a set of candidate coefficients that
dominate the dynamic response speeds to identify the slow
and fast dynamics. In [26], [27], the dominant coefficients
are selected as the common coefficients of the state variables
and their derivative terms. This selection has been verified
within a neighborhood of an equilibrium using modal analysis
and tested with hardware experiments in [27]. However, this
method may not be applicable to nonlinear systems in our
problem. For nonlinear systems, there is no general method
like spectral analysis in linear systems that can precisely
measure the dynamic response speeds.

To overcome this challenge, we first approximately follow
the definition of dominant coefficients which has been val-
idated on a small-signal model of the MG in [27]. Then,
we select the smaller coefficients as perturbation coefficients
ε. Finally, if the derived ROM and BLM pass the proposed
stability and accuracy assessment in Theorem 1, this candidate
ε and the corresponding separation of slow and fast dynamics
are theoretically verified. If not, we need to re-identify the
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slow and fast dynamics by lowering the threshold of ε and
considering different combinations of parameters as dominant
coefficients in the differential equations.

Considering the MG model in grid-tied mode, the derivative
term can be rewritten as(

1

ωc
Ṗi,

1

ωc
Q̇i, Φ̇PLLi, δ̇i,

KP,Pi

KI,Pi
Φ̇Pi,

KP,Pi

KI,Pi
Φ̇Qi,

KP,Ci

KI,Ci
Γ̇di,

KP,Ci

KI,Ci
Γ̇qi,

1

ωc,PLLi
V̇od,fi,

Lfi

Rfi
İldi,

Lfi

Rfi
İlqi,

Lci

Rci
İodi,

Lci

Rci
İoqi,

Cfi

Rdi
V̇odi,

Cfi

Rdi
V̇oqi

)
(43)

Substituting the parameters in [39] into the vector (43), we
have(

1

50.26
Ṗi,

1

50.26
Q̇i, Φ̇PLLi, δ̇i,

0.5

25
Φ̇di,

0.5

25
Φ̇qi,

1

100
Γ̇di,

1

100
Γ̇qi,

1

7853.98
V̇od,fi,

0.0042

0.5
İldi,

0.0042

0.5
İlqi,

0.0005

0.09
İodi,

0.0005

0.09
İoqi,

0.000015

2.025
V̇odi,

0.000015

2.025
V̇oqi

)
=

(
0.02Ṗi, 0.02Q̇i, Φ̇PLLi, δ̇i, 0.02Φ̇di, 0.02Φ̇qi, 0.01Γ̇di,

0.01Γ̇qi, 1.3× 10−4V̇od,fi, 8.4× 10−3İldi, 8.4× 10−3İlqi,

1.4×10−3İodi, 1.4×10−3İoqi, 7.4×10−6V̇odi, 7.4×10−6V̇oqi

)
.

It can be seen that the magnitudes of dominant coefficients
vary significantly, which is caused by the two-time-scale
property of the system. The smaller parameters are selected as
perturbation coefficients ε, which are utilized to classify the
slow and fast states in this system:

x1 = [Pi Qi ΦPLLi δi ΦPi ΦQi Γdi Γqi ]
⊤
, (44)

z1 = [Vodfi Ildi Ilqi Iodi Ioqi Vodi Voqi]
⊤
. (45)

Remark 4: The concepts of slow and fast dynamics are
relative and depend on the specific parameter settings. Differ-
ent parameters can alter the dynamic response speeds of the
states accordingly. For instance, the states associated with PI
controllers are regarded as slow dynamics under the parameter
setting in [39], but as fast dynamics under the parameter setting
in [26]. Hence, the identification of slow and fast dynamics
should take into account the detailed parameter setting, and
the results (44)-(45) are not generalizable for any MGs.

We first set ε to 0 and calculate the QSS solution z1 =
h (x1,u1) by solving the algebraic equation with respect to the
fast dynamics (45). Then the ROM is obtained by substituting
z1 into the slow dynamic equations with respect to (44).
Comparing the numbers of state variables in equation (43)
and (44), the order of the original model is reduced to 53.33%.
Then we derive the BLM using equation (15). Once the ROM
and BLM are obtained, we use the conventional ISS and GAS
judging theorems in [21] to evaluate their stability of them.
Specially, the unforced nonlinear ROM is exponentially stable
by checking that its linearized system matrix has eigenvalues
with strictly negative real parts. It can be verified that the
assumptions are satisfied. Based on this result, we are inclined
to anticipate the stability of the original system.

Fig. 5. Simulation results of slow and fast dynamic responses of interested
bus 34: active and reactive power.

Fig. 6. Simulation results of slow and fast dynamic responses of interested
bus 34: dq-axis output currents Iod and Ioq.

To ensure this, we still need to theoretically verify the
accuracy of the ROM and BLM. Following the technique
in the proof, we can calculate the boundary of ε as ε∗ =
min {ε1, ε2, ε3} = 7.92 × 10−3. Note that max {ε} = 3.9 ×
10−3 < 7.92 × 10−3 = ε∗. Therefore, we can conclude that
this MGs system is stable and we can use the solutions of
its ROM x̂ and z = h(x̂,u) + ŷ to accurately represent
its real dynamic responses. Furthermore, given T = 0.43 s,
we can find a ε∗∗ satisfying max {ε} < ε∗∗ = 4.2 × 10−3,
which indicates that the term ŷ will be O(ε) after 0.43 s.
Here, a trade-off exists between accuracy and efficiency. When
the accuracy is prior, one can choose z = h(x̂,u) + ŷ by
computing an additional differential equation (BLM). When
the efficiency dominates, use z = h(x̂,u) suffering the
inaccuracy only within (0, T ).

Then we conduct the simulation of the derived ROM using
MATLAB. The active power command changes to 1000 W
at 2 s and changes to 500 W at 4 s. The reactive power
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Fig. 7. Simulation results of slow and fast dynamic responses of interested
bus 34: dq-axis output voltages Vod and Voq.

command changes to 500 W at 2 s and changes to 300
W at 4 s. A comparison simulation using the small-signal
order reduction method in [27] is conducted under the same
conditions. The simulation results are shown in Fig. 5-7,
where blue solid lines denote the responses of the original
model, green dash-dotted lines denote that using small-signal
order reduction method, pink dotted lines denote the results
of proposed LSOR without BLM compensation (i.e., QSS
solution), and red dashed lines are the responses with the
addition of solution ŷ of BLM (i.e. z = h + ŷ). For the
main slow dynamics (active and reactive powers) shown in
(a), the proposed LSOR method is more accurate than the
small-signal model during the transient period. Regarding the
fast dynamics voltages and currents illustrated in (b) and (c),
the LSOR method with compensation ŷ provides the most
accurate performance. However, the LSOR without ŷ gives
worse performance than the small-signal one used in [27].
This is because the fast dynamics predicted by the method in
[27] are also compensated with a corrected response. From
the stability point of view, the red lines in Fig. 5-7 show that,
with bounded input power commands, both ROM and BLM
are stable, which indicates that the original system is stable
as justified by the stability of blue lines. To systematically
evaluate the quantitative contrasts in the dynamic behaviors of
both the proposed large-signal and small-signal order reduction
methods, we present the root-mean-square errors (RMSEs)
computed from the results displayed in Figs. 5-7. As tabulated
in Table I, these RMSE values are sufficiently small when
compared to the magnitudes of their corresponding state vari-
ables. It is important to note that the compensation facilitated
by the BLM exclusively pertains to fast dynamics. Thus, the
respective cells of active/reactive powers which are identified
as slow dynamics in this case in Table I remain unpopulated.

C. Computational Efficiency Analysis

In order to evaluate the computational efficiency of the pro-

TABLE I
RMSES OF SLOW AND FAST DYNAMICS USING LSOR, LSOR WITH BLM

COMPENSATION, AND SMALL-SIGNAL ORDER REDUCTION METHODS.

State

Model LSOR LSOR w/
compensation Small-signal

P (kW) 0.014 0.019

Q (kVAR) 0.004 0.008

Iod (A) 0.257 0.021 0.101

Ioq (A) 0.499 0.040 0.227

Vod (V) 0.022 0.002 0.008

Voq (V) 0.286 0.023 0.127

TABLE II
COMPUTATIONAL TIME OF ORIGINAL, SMALL-SIGNAL AND
LARGE-SIGNAL ROMS USING DIFFERENT ODE SOLVERS.

Solver

Model Original
model Large-signal Small-signal

ode45 94.25 s 11.92 s 9.56 s

ode15s 11.43 s 10.81 s 8.24 s

posed SPT-based method, particularly from the viewpoint of
reducing stiffness, two different ordinary differential equation
(ODE) solvers are implemented: ode45 solver and ode15s
solver. Stiffness is a property of a system of ordinary dif-
ferential equations that affects the numerical stability and
efficiency of solving the system. A system is stiff if it has
some components that vary much faster than others, or if it
has some solutions that decay much faster than the solution of
interest [40]. In such cases, a nonstiff numerical method, such
as ode45 in MATLAB, would require very small time steps
to capture the rapid changes or avoid numerical oscillations,
which would result in a large computational cost and possibly
loss of accuracy. A stiff numerical method such as ode15s in
MATLAB, on the other hand, can handle larger time steps
and maintain stability and accuracy. However, it may slightly
reduce the accuracy of the solution.

Table II demonstrates that the ode45 solver achieves a more
significant reduction in computational time than the ode15s
solver when applied to the reduced-order models obtained
from the original full-order model. This comparison suggests
that our LSOR method transforms the original model from a
stiff ODE problem to a non-stiff one. The proposed method
also enhances the stability of the ODE-solving process through
this transformation. Therefore, the proposed method can de-
crease the computational time from two aspects: the order of
the system and the stiffness of the ODE problem. Furthermore,
the small-signal order reduction method is slightly faster than
the LSOR method. This is because the LSOR results in a set
of ODEs with many nonlinear terms, which require more time
to solve than a linear one. However, as Table I indicates, the
accuracy of the small-signal method is lower than the proposed
LSOR method.

Remark 5: Note that with the addition of the solution of
BLM, we need to solve another set of differential equations.
This seems that the proposed method has limited ability to
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DER unit

Short-circuit faulted 
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dq 
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𝐶f𝑖  

𝑉b,dq𝑖  

𝑉b,abc𝑖  

Fig. 8. Diagram illustrating the implementation of short-circuit fault test.

reduce the computational burden. However, this is not the case.
As discussed above, SPT reduces the computational burden
not only by reducing the number of differential equations
but also by converting the stiff problem to a non-stiff one.
Moreover, the adopted example is a possible worst case that
the perturbation coefficients are not small enough. When ε is
sufficiently small, the converging time T can be sufficiently
small as well. Then we can directly use the algebraic equation
to estimate the fast states.

D. Performance in Grid-tied Mode under Short-Circuit Faults

In the preceding subsections, we examined the performance
of our proposed LSOR method under external disturbances
induced by load sudden changes. To gain deeper theoretical
insights, we investigated how load sudden changes influence
the inverters’ internal states through the power controller (5).
Seeking a comprehensive understanding of various external
disturbances’ influence on the dynamic performance of the
ROM, we further explore the impact of disturbance induced by
short-circuit faults in this subsection. In contrast to load sudden
changes, the influence of short-circuit faults is transmitted
through the bus voltages Vbd and Vbq connected to the LC
filter of the DER, as detailed in (9). This discovery establishes
a theoretical foundation that streamlines the simulation setup.
Illustrated in Fig. 8, this approach allows us to concentrate

Fig. 9. Simulation results of slow and fast dynamic responses of the interested
bus 34 under short-circuit fault disturbance: active and reactive power.

Fig. 10. Simulation results of slow and fast dynamic responses of the
interested bus 34 under short-circuit fault disturbance: dq-axis output currents
Iod and Ioq.

Fig. 11. Simulation results of slow and fast dynamic responses of the
interested bus 34 under short-circuit fault disturbance: dq-axis output voltages
Vod and Voq.

on the key variables influencing order reduction performance,
ensuring efficiency in our simulation.

The fault scenario replicates real-world conditions by adopt-
ing time-varying real utility-measured faulted voltage data.
The fault sequence stages short-circuit scenarios, starting with
an A-B fault at 5 seconds, followed by an A-B-G fault at 5.24
seconds, and a more severe three-phase fault at 5.63 seconds.
The sequence concludes with fault clearance at 6.38 seconds,
restoring the system to its normal operating state. Same as in
Section IV.B, the DER at the interested bus 34 is analyzed.

Figs. 9-11 compare the dynamic responses of the pro-
posed SPT-based LSOR and the original full-order model for
the states (P,Q, Iod, Ioq, Vod, Voq), which have RMSEs of
(0.01, 0.01, 0.01, 0.01, 0.01, 0.01). The results show that the
proposed SPT-based LSOR method can accurately capture
both the slow and fast dynamics of the original full-order
model under the complex short-circuit fault scenario, which
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Fig. 12. Comparison of the active/reactive power of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

demonstrates its effectiveness and robustness.

E. Performance in Islanded Mode under Load Sudden Change

In this subsection, a simulation in islanded mode is con-
ducted to verify the effectiveness of the proposed method by
showing the dynamic responses of the buses with DERs. To
study the dynamic characteristics, a 20 Ω load is connected
parallel to bus 12 at 2 s and disconnected at 2.5 s. Following
the similar procedure in case 1, we can identify the slow and
fast dynamics of this multi-bus system. Despite the different
parameter settings of inverters, the relative magnitudes of
derivative terms’ coefficients still hold uniformly. That means
we can obtain a uniform division of slow and fast dynamics.
This fact is based on the nature of different components’ time
scales. The slow and fast states are divided as follows,

x2 = [Pi Qi ΦPLLi δi Φdi Φqi Γdi Γqi ]
⊤
, (46)

z2 = [Vodfi Ildi Ilqi Iodi Ioqi Vodi Voqi]
⊤
. (47)

TABLE III
COMPUTATIONAL TIME OF ORIGINAL AND REDUCED-ORDER MODELS

USING DIFFERENT ODE SOLVERS IN ISLANDED MODE.

Solver

Model
Original model Reduced model Percentage

ode45 104.25 s 11.25 s 89.2%

ode15s 13.23 s 11.37 s 14%

The ROM can be derived using the Algorithm 1. The order
of the original model is reduced from 105th to 56th. The
simulation time is shown in Table III. Same as analyzed in
the last case study, the proposed method can convert the
stiff model of islanded MG to a non-stiff one to reduce
the computational burden. Figs. 12-14 show the dynamic
responses of the original and reduced models of seven buses
with DERs. The comparison between the results of the original

Fig. 13. Comparison of the dq-axis output currents of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

Fig. 14. Comparison of the dq-axis output voltages of the seven buses with
DERs of original and reduced systems: (a)-(b) denote the responses of the
reduced-order system, (c)-(d) are the responses of the original system.

model and the reduced one shows the accuracy of the ROM.
In addition, the responses under load sudden change verify
the effectiveness of our method against large disturbances in
islanded systems.

V. CONCLUSION

This paper proposes an LSOR approach for MGs in the
EMT time scale with consideration of external control input
by synthesizing a novel stability and accuracy assessment
theorem. The advantages of our proposed theorem can be
summarized into two aspects. Firstly, one can determine the
stability of a full-order system by only analyzing the stability
of its derived ROM and BLM. Specially, when the ROM
is input-to-state stable and the BLM is uniformly globally
asymptotically stable, the original MG system can be proved
to be stable under several common growth conditions. This
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makes it easier and more feasible to determine the stability of
a high-order system. Secondly, a set of quantitative accuracy
assessment criteria is developed and embedded into a tailored
feedback mechanism to guarantee the accuracy of the derived
ROM. It is proved that the errors between solutions of reduced
and original models are bounded and convergent under such
conditions. The above stability and accuracy theorem has
been strictly proven indicating that the proposed method is
generic for arbitrary dynamic systems satisfying the given
assumptions. Finally, we have conducted multiple simulations
under different conditions on an IEEE standard MG system to
verify the effectiveness of the proposed method.

The suggested LSOR method holds promise for future
extensions. One potential avenue involves exploring its appli-
cability across diverse classes of nonlinear systems, encom-
passing uncertainties, time-varying coefficients, time delays,
and similar complexities. Investigating whether the established
sufficient conditions for stability and accuracy of ROM can
be extended to these intricate systems would be a valuable
pursuit. Another potential extension lies in integrating the pro-
posed LSOR method with nonlinear control and optimization
techniques. This could involve designing stabilizing controllers
based on the ROM for high-order systems, presenting an
opportunity to streamline the complexity of controller design.
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