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Abstract: With the increasing penetration of electronic loads and distributed energy resources, conventional load models
cannot capture their dynamics. Therefore, a new comprehensive composite load model is developed by Western Electricity
Coordinating Council (WECC). However, this model is a complex high-order non-linear system with multi-time-scale property,
which poses challenges on power system studies with heavy computational burden. In order to reduce the model complexity,
the authors firstly develop a large-signal order reduction (LSOR) method using singular perturbation theory. In this method, the
fast dynamics are integrated into the slow ones to preserve transient characteristics of the former. Then, accuracy assessment
conditions are proposed and embedded into the LSOR to improve and guarantee the accuracy of reduced-order model. Finally,
the reduced-order WECC composite load model is derived by using the proposed algorithm. Simulation results show that the
reduced-order large-signal model significantly alleviates the computational burden while maintaining similar dynamic responses
as the original composite load model.

1 Introduction
Power system load modelling is important for power system
studies such as stability analysis, optimisation, and controller
design [1]. Although this topic has been widely studied, it is still a
challenging problem due to increasing diversity of load
components and lack of detailed load information and
measurements.

Load models can be classified into static and dynamic ones.
Static load models such as static constant impedance–current–
power (ZIP) model and exponential model have simple model
structures [2, 3]. However, they cannot capture the dynamic load
behaviours [4–10]. Motivated by the 1996 blackout of the Western
Systems Coordinating Council, a widely-used dynamic composite
load model was developed [11]. The model consists of a ZIP and a
dynamic induction motor (IM). It was designed to represent highly
stressed loading conditions in summer peak hours. However, this
interim load model was unable to capture the fault-induced delayed
voltage recovery events [7]. A preliminary Western Electricity
Coordinating Council (WECC) composite load model was
proposed by adding an impedance representing the electrical
distance between substation and end-users, an electronic load, and
a single-phase motor [12–14]. After a series of improvements, the
latest WECC composite load model (CMPLDWG) is developed as
shown in Fig. 1. The electrical distance between the substation and
end-users is represented by a substation transformer, a shunt
reactance, and a feeder equivalent. The model consists of three

three-phase motors, one aggregate single-phase AC motor, one
static load, one power electronics component, and one distributed
energy resource (DER). The DER in CMPLDWG is currently
represented by the PVD1 model [15]. However, PVD1 has 5
modules, 121 parameters, and 16 states, which is as complex as the
CMPLDW itself. Therefore, the Electric Power Research Institute
(EPRI) has developed a simpler yet more comprehensive model to
replace PVD1, which is named as DER_A model [15].

The above WECC CMPLDW + DER_A model is a complex
high-order non-linear dynamical system with multi-time-scale
property, which means the state vector is high-dimensional and the
transient velocity of each state varies significantly. These
characteristics result in two main challenges. Firstly, it increases
the difficulty of dynamic stability analysis due to the numerous
state variables. Secondly, it makes simulation studies of a high-
order power system computationally demanding or even infeasible.
There are two main reasons for this high computational burden.
One reason is the shear dimensionality of the problem. The other
comes from the two-time-scale property of the model. This makes
solving the model a stiff ordinary differential equation (ODE)
problem, which requires small time steps to calculate the fast
dynamics, and consequently results in long computational time to
capture slow dynamics. The fast dynamics are often introduced by
the intentionally added inductance and capacitance, moment of
inertia, and parasitic elements inherent in the system [16].
However, simply neglecting the fast dynamics may lead to
modelling inaccuracies in dynamic response and stability property.

Fig. 1  Schematic diagram of the WECC CMPLDWG [13]
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In order to accelerate computation while maintaining the accuracy
and faithful stability property of the original load model, it is
imperative to develop a high-fidelity reduced-order load model. To
our best knowledge, this is the first paper on dynamic order
reduction of WECC composite load model especially containing
the DER_A model.

The existing model reduction methods usually project the
higher dimensional counterpart into a lower dimensional subspace
where dynamic features of the original model dominate. Singular
perturbation is the kind of method which considers the fast
dynamics as boundary-layers and includes their solutions into slow
dynamics. Singular perturbation method is suitable for analysing
two-time-scale problems and is widely used in power systems
analysis. Previous applications include the derivation of reduced-
order modelling of synchronous machines [17], microgrids [18],
and distribution grid-tied systems with wind turbines [19].
However, these papers fall short of guaranteed accuracy and cannot
be directly applied to the WECC composite load model due to the
different system characteristics.

Therefore, this paper develops a novel accuracy assessment
theorem which takes into account the impact of external inputs on
the accuracy of reduced system. By embedding the theorem, we
propose a high-fidelity order reduction approach for WECC
composite load model. The derived high-fidelity reduced-order
model can replace the original model in power system simulations
for stability analysis and control applications with less
computational complexity. Specifically, we improve the accuracy
from two aspects. Firstly, without any simplification or
linearisation, we adopt the large-signal order reduction (LSOR)
method based on singular perturbation theory to maintain all the
dynamic characteristics of the original system. Secondly, we
propose sufficient conditions for accurate order reduction, and then
integrate them into the LSOR method to theoretically guarantee the
high accuracy of the reduced-order model. Note that this proposed
approach is general and can be applied to various dynamic models.

The rest of the paper is organised as follows. Section 2 proposes
high-fidelity order reduction approach in a general form. Section 3
introduces mathematical representation of WECC composite load
model. Section 4 derives the reduced-order model using the
proposed method. Section 5 shows the simulation results and
analysis. Section 6 concludes the paper.

2 High-fidelity order reduction method
Accurate load modelling is essential to power system studies. To
solve the challenges raised by high-order characteristics of WECC
composite load model, we propose a general approach for high-
fidelity order reduction in this section. We first introduce the LSOR
method based on singular perturbation theory. A novel accuracy
assessment theorem is then derived and embedded into the LSOR
to guarantee the accuracy of reduced-order model.

2.1 LSOR based on singular perturbation theory

Consider a standard singular perturbation model as follows:

ẋ = f x, z, u, ε , (1)

εż = g x, z, u, ε , (2)

where x ∈ ℝn represents slow state vector, z ∈ ℝm denotes fast
state vector, u ∈ ℝp denote external input vector, and ε ∈ [0, ε0]; f
and g are Lipschitz continuous functions.
 

Remark 1: Selecting the perturbation coefficient ε for real
physical systems is challenging. In most cases, we pick it based on
our knowledge of the real system. In cases where it is unclear
which parameter is small, we can locally linearise the system
around the equilibrium point and use modal decomposition to
identify the slow and fast dynamics.

When ε is small, the fast transient velocity ż = g/ε can be much
larger than that of the slow transient ẋ. To solve this two-time-scale

problem, we can set ε = 0, then (2) degenerates to the following
algebraic equation:

0 = g x, z, u, 0 . (3)

Assuming that (3) has at least one isolated real root, and satisfies
the implicit function theorem, then for each argument, we can
obtain the quasi-steady-state (QSS) solution in a local vicinity
around the isolated root

z = h x, u . (4)

Substituting (4) into (1) and setting ε = 0, we obtain the QSS
model

ẋ = f x, h x, u , u, 0 . (5)

We call the QSS system (5) the reduced-order model since its order
drops from n + m to n. The slow states can be obtained by solving
the reduced-order model (5), whereas the fast states are represented
by (4). However, (4) only gives approximate solution unless ε is
zero. To quantify the error between approximate and actual fast
states, we denote the error as y = z − h(x, u). Then in the fast-time-
scale τ = t /ε, the dynamics of y are governed as follows:

dy

dτ
= G(x, y, u, ε)

= g(x, h(x, u) + y, u, ε)

−ε
∂h

∂x
f (x, h(x, u) + y, u, ε) +

∂h

∂u
u̇ .

(6)

Let ε = 0, we obtain the boundary-layer model

dy

dτ
= g x, y + h x, u , u, 0 . (7)

Note that the exact fast states are z = y + h(x, u), but we do not
know (x,y). Therefore, if we can guarantee the accuracy of
reduced-order model and boundary-layer model, then we can use
their solutions (x

^ , y
^) instead of (x,y). However, these models are

exact only when ε is exactly zero, which is obviously not the case
for the studied system. Thus, we need to quantitatively assess the
accuracy of reduced-order model when ε is small yet non-zero.
This motivates the next subsection.

2.2 High-fidelity LSOR with accuracy assessment

Before deriving the performance guarantee of the proposed high-
fidelity order reduction approach, we first introduce a few technical
definitions and assumptions.
 

Definition 1: Class K function α: [0, t) → [0, ∞) is a
continuous strictly increasing function with α(0) = 0.
 

Definition 2: Class Kℒ function β: [0, t) × [0, ∞) → [0, ∞) is a
continuous function satisfying: for each fixed s, the function β(r, s)
belongs to class K; for each fixed r, the function β(r, s) is
decreasing with respect to s and β(r, s) → 0 for s → ∞.
 

Definition 3: f = O(ε) is equivalent to f ⩽ kε.
 

Assumption 1: The functions f, g, and their first partial
derivatives are continuous and bounded with respect to (x, z, u, ε);
h and its first partial derivatives ∂h/∂x, ∂h/∂u are locally Lipschitz;
and the Jacobian ∂g/∂z has bounded first partial derivatives with
respect to its arguments.
 

Assumption 2: The reduced-order model (5) is input-to-state
stable with Lyapunov gain α as follows:

x
^ ⩽ β( ∥ x(0) ∥ , t) + α( ∥ u ∥ ), (8)
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where x^ is a solution of (5), β is a function of class Kℒ, α is a
class K function, and ∥ ⋅ ∥ denotes any p-norm.
 

Assumption 3: The origin of the boundary-layer model (7) is a
uniformly globally exponentially stable equilibrium and the
solution y^ of (7) follows that

∥ y
^ (τ) ∥ ⩽ k1e−aτ, ∀ τ ⩾ 0, (9)

where k1 and a are positive constants.
Assumption 1 describes the basic growth conditions on the

original system which are commonly satisfied for power load
models. Assumptions 2 and 3 are stability conditions on reduced-
order model and boundary-layer model, respectively.

Then, we propose the accuracy assessment index in the
following accuracy assessment theorem, which will be embedded
into the LSOR to realise high-fidelity order reduction. Before that,
we give the following lemma for the proof of the theorem.

 
Lemma 1: Assume max ∥ x(0) ∥, ∥ y(0) ∥, ∥ u ∥, ∥ u̇ ∥ ⩽ μ

holds for some positive constant μ. Then there exists a class Kℒ
function βx, a class K function αx and positive constants μx and ξ
satisfying μx > βx(μ, 0) + αx(μ) + ξ such that ∥ x(t) ∥ ⩽ μx for all
t ∈ [0, ∞).

 
Proof: According to the definition of class Kℒ functions, we

have βx(μ, 0) ⩽ μ, ∀ μ ∈ ℝ, so μx > μ. Since x is continuous with
finite initial conditions, we can find a maximal interval [0, tmax), in
which ∥ x(t) ∥ ⩽ μx, where tmax > 0 is defined as the upper bound
of the interval. From the definition of μ and the assumption that tmax

is finite, there must be some positive constant Δt such that
∥ x(t) ∥ ⩽ μx holds for all t ∈ [0, tmax + Δt). This contradicts that
tmax is the upper bound, so tmax should be infinite and
∥ x(t) ∥ ⩽ μx, ∀ t ∈ [0, ∞). □

 
Theorem 1: If Assumption 1–3 are satisfied, then there exist

positive constants ε
∗, μ, such that for all t ∈ [0, ∞),

max ∥ x(0) ∥, ∥ y(0) ∥, ∥ u ∥, ∥ u̇ ∥ ⩽ μ, and ε ∈ (0, ε
∗], the

errors between solutions of original system (1) and (2) and its
reduced-order model (5) and boundary-layer model (7) satisfy

x(t, ε) − x^(t) = O(ε), (10)

z(t, ε) − h(x^(t), u(t)) − y^(t /ε) = O(ε), (11)

where x^(t) and y^(τ) are the solutions of reduced-order model (5)
and boundary-layer model (7), respectively. Furthermore, for any
given T > 0, there exists a positive constant ε ∗ ∗ ⩽ ε

∗ such that for
t ∈ T , ∞  and ε < ε

∗ ∗ , it follows that

z(t, ε) − h(x^(t), u(t)) = O(ε) . (12)
 
Remark 2: Equation (11) means that when Assumptions 1 and 3

are satisfied, we can use h + y^ to accurately represent the solution
of fast dynamics for ε ∈ [0, ε

∗] and bounded inputs. However, it
requires solving the boundary-layer model. Further, (12) means
that if ε ⩽ ε

∗ ∗ < ε
∗, the solution of fast transient can be estimated

by only h(t, x^(t)) after T > 0. This result significantly simplifies the
order reduction.

 
Proof: From Assumption 2, we know that the solution of

reduced-order model is bounded for bounded inputs. Therefore, we
can expect that x is also bounded if ∥ x − x^ ∥ = O(ε). However,
we cannot use this inequality since it has not been proven yet.

Therefore, we exploit signal truncation as Lemma 1 to show that x
is in a compact set. Then by Assumption 1, we have that the
argument of f (x, z, u, ε) is compact. Since f is continuous, it
follows that f is bounded, i.e. f ⩽ k0, and x(t) is Lipschitz.

Then using Assumptions 1, 3, and Lemma 9.8 in [16], we
conclude that there exists a Lyapunov function Vy(x, y, u) and
positive constants b1, b2, …, b6 and ρ0 satisfying

b1 ∥ y ∥2 ⩽ Vy(x, y, u) ⩽ b2 ∥ y ∥2 , (13)

∂Vy

∂y
G(x, y, u, 0) ⩽ − b3 ∥ y ∥2 , (14)

∥
∂Vy

∂y
∥ ⩽ b4∥ y ∥; ∥

∂Vy

∂x
∥ ⩽ b5∥ y ∥2; ∥

∂Vy

∂u
∥ ⩽ b6∥ y ∥2,

(15)

for all y ∈ { ∥ y ∥ < ρ0} and all (x, u) ∈ ℝn × ℝp.
To assess the accuracy of solutions of fast dynamics, we define

the estimation error as

σy(τ, ε) = y(τ, ε) − y^(τ) . (16)

Differentiate both sides of (16) and abbreviate
x(t0 + ετ, ε), y(τ, ε), u(t0 + ετ, ε), σy(τ, ε) as x, y, u, σy, respectively,
then we have

∂σy

∂τ
= G(x, y, u, ε) − G(x0, y^, u0, 0)

= G(x, σy, u, 0) + ΔG,
(17)

where ΔG = G(x, y, u, ε) − G(x, σy, u, 0) − G(x0, y^, u0, 0). Utilising
the Lipschitz conditions of G and x, and the condition of Lemma 1,
we have (see (18)) , for some non-negative constants
a, ki, i = 1, …, 5 and non-negative Lipschitz constants
lj, j = 1, …, 3, where
k5 = l1 + k1 max {l3k4, l2 + l3k0} × max {1, 1/a}.

Equation (17) can be viewed as the perturbation of

∂σy

∂τ
= G(x, σy, u, 0) . (19)

Using (13)–(15) and (18), the derivative of Lyapunov funtion
Vy(x, σ, u) along the trajectories of (17) can be calculated as

V̇ y =
∂Vy

∂x
f +

1
ε

⋅
∂Vy

∂σy
(G + ΔG) +

∂Vy

∂u
u̇

⩽ b5k0 ∥ σy ∥2 −
b3

ε
∥ σy ∥2 + b6μ ∥ σy ∥2

+
b4

ε
∥ σy ∥ (k2 ∥ σy ∥2 + k1k3 ∥ σy ∥ e−aτ + εk5)

⩽ −
b3

2ε
∥ σy ∥2 +

b4k1k3

ε
e−aτ ∥ σy ∥2 + b4k5 ∥ σy ∥

⩽ −
2
ε

(ξ1 − ξ2e
−aτ)Vy + 2ξ3 Vy,

(20)

for 0 < ε ⩽ ε
∗ and ∥ σy ∥ ⩽ b3/(4b4k2), where ξ1 = b3/(4b2),

ξ2 = b4k1k3/(2b1), ξ3 = b4k5/(2 b1), and ε∗ = b3/(b5k0 + b6μ).
Let Wy = Vy and use the comparison lemma, we have

Wy(τ) ⩽ ϕ(τ, 0)Wy(0) + εξ3∫
0

τ

ϕ(τ, s) ds, (21)

∥ ΔG ∥ ⩽ k2 ∥ σy ∥2 + εl1 + (k3 ∥ σy ∥ + l2 u − u0 + l3 ∥ x − x0 ∥ ) ∥ y^ ∥

⩽ k2 ∥ σy ∥2 + k1k3 ∥ σy ∥ e−aτ + εl1 + ε(l2μτ + l3k4 + l3k0τ)e−aτ

⩽ k2 ∥ σy ∥2 + k1k3 ∥ σy ∥ e−aτ + εk5,

(18)
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ϕ(τ, s) = e−∫s
τ(ξ1 − ξ2e−aυ) dυ ⩽ ξ4e

−ā(τ − s), (22)

for some positive constants ξ4 and ā. Since σy(0) = O(ε), it follows
that σy(τ) = O(ε) for all τ ⩾ 0. Then we can conclude that (11)
holds ∀ε ⩽ ε

∗ and ∀ t ⩾ 0.
Moreover, from (9), we have e−at /ε ⩽ ε, ∀ at ⩾ εln(1/ε), then

the term y^(t /ε) will be O(ε) on [T , ∞) for ε ∈ [0, ε
∗ ∗ ], where

(ε ∗ ∗ , T) is a pair of solution of

εln
1
ε

= aT . (23)

Now we have proved the accuracy of the solutions of fast
dynamics. To show the conditions for accurate solutions of slow
dynamics, we can define σx(t, ε) = x(t, ε) − x^(t). As (13)–(22), it
can be verified that if Assumptions 1–3 are satisfied, then (10)
holds for ε ∈ [0, ε

∗] and all t ∈ [0, ∞). □
 
Remark 3: Note that ε

∗ is a function of the bound of input
signals and it follows that

lim
μ → 0

ε
∗ =

b3

b5k0
and lim

μ → + ∞
ε

∗ = 0. (24)

This means when inputs are zero, the upper bound of ε is equal to
that of its autonomous system; while when the inputs are
unbounded, ε must be exactly zero to guarantee the accuracy of the

reduced-order model. This result reflects the impact of external
inputs on the accuracy of the reduced-order model.

The overall algorithm of this proposed high-fidelity order
reduction method can be concluded as Algorithm 1 (see Fig. 2). 

3 Mathematical representation of WECC
composite load model
To apply the singular perturbation theory, we need the
mathematical representation of WECC composite load model,
which can be found in our previous work [20]. Since our objective
is to reduce the order of dynamic parts, the static ones such as
single-phase motor (which is modelled as a performance model
[14]), electronic loads [2] and static load are out of the scope of
this paper. For brevity, only the mathematical representation of
dynamic components is introduced in this section.

3.1 Three-phase motor model

WECC composite load model uses three three-phase fifth-order
IMs, called motors A, B, and C, to represent different types of
dynamic components. These three-phase motors have the same
structure but different parameter settings. The block diagram of the
IM model is shown in Fig. 3. There are four dynamic equations
with respect to Eq′ , Ed′ , Eq″, and Ed″. By adding the dynamic
equation governing the slip s, we can represent the complete fifth-
order model as follows:

Ėq′ =
1

Tp0
−Eq′ − id Ls − Lp − Ed′ ⋅ ω0 ⋅ s ⋅ TP0 , (25)

Ėd′ =
1

Tp0
−Ed′ + iq Ls − Lp + Eq′ ⋅ ω0 ⋅ s ⋅ TP0 , (26)

Ėq″ =
Tp0 − Tpp0

Tp0Tpp0
Eq′ −

Tpp0 Ls − Lp + Tp0 Lp − Lpp

Tp0Tpp0
id

−
1

Tpp0
Eq″ − ω0 ⋅ s ⋅ Ed″,

(27)

Ėd″ =
Tp0 − Tpp0

Tp0Tpp0
Ed′ +

Tpp0 Ls − Lp + Tp0 Lp − Lpp

Tp0Tpp0
iq

−
1

Tpp0
Ed″ + ω0 ⋅ s ⋅ Eq″,

(28)

ṡ = −
p ⋅ Ed″ ⋅ id + q ⋅ Eq″ ⋅ iq − TL

2H
. (29)

The algebraic equations are

TL = Tm0 Aw
2 + Bw + C0 + DwEtrq , (30)

Tm0 = pEd0″id0 + qEq0″iq0, (31)

w = 1 − s, (32)

id =
rs

rs
2 + Lpp

2 (Vd + Ed″) +
Lpp

rs
2 + Lpp

2 (Vq + Eq″), (33)

iq =
rs

rs
2 + Lpp

2 (Vq + Eq″) −
Lpp

rs
2 + Lpp

2 (Vd + Ed″), (34)

P = Vdid + Vqiq, (35)

Q = Vqid − Vdiq, (36)

where Eq′ , Ed′ , Eq″, Ed″, and s are the five state variables; Ls, Lp, and
Lpp are synchronous reactance, transient, and subtransient
reactance, respectively; Tp0 and Tpp0 are transient and subtransient
rotor time constants, respectively; and ω0 is the synchronous
frequency.

Fig. 2  Algorithm 1: high-fidelity order reduction
 

Fig. 3  Block diagram of three-phase motor adopted in the WECC
composite load model [14]
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3.2 DER_A model

Recently, EPRI developed a new model to represent aggregated
renewable energy resources named DER_A which has fewer states
and parameters than the previous PVD1 model. The block diagram
of DER_A is shown in Fig. 4 and the dynamic model is as follows:

Ṡ0 =
1

Trv
Vt − S0 , (37)

Ṡ1 =
1
Tp

S8 − S1 , (38)

Ṡ2 =
−

S2

Tiq
+

Qref

Tiq ⋅ sat1 S0
if Pfflag = 0,

−
S2

Tiq
+

tan pfaref × S1

Tiq ⋅ sat1 S0
if Pfflag = 1,

(39)

Ṡ3 =

sat2 S2 + sat3 DBV Vref0 − S0 ⋅ Kqv − S3

Tg

if Vtripflag = 0,

sat2 S2 + sat3 DBV Vref0 − S0 ⋅ Kqv ⋅ S4 − S3

Tg

if Vtripflag = 1,

(40)

Ṡ4 =
1
Tv

VP(S0, Vrfrac) − S4 , (41)

Ṡ5 =
1

Trf
Freq − S5 , (42)

Ṡ6 = Kigsat4{Pref − S1 + sat5 Ddn ⋅ DBF(Freqref − S5)

+sat6 Dup ⋅ DBF(Freqref − S5) } +
Kpg

Tp
S1

+Gdn Freq − S5 + Gup Freq − S5 −
S8

Tp
,

(43)

Ṡ7 =
0 if Freqflag = 0,

sat8 sat˙
7 S6 if Freqflag = 1,

(44)

Ṡ8 =
1

Tpord
S7 − S8 , (45)

Ṡ9 =

1
Tg

sat9
sat7(S8)
sat1 S0

× S4 − S9 if Vtripflag = 1,

1
Tg

sat9
sat7(S8)
sat1 S0

− S9 if Vtripflag = 0,
(46)

where sati(x), i = 1, …, 9 are the saturation functions; DBV(x) and
DBF(x) are deadzone functions with respect to voltage and
frequency, respectively; and VP(x, Vrfrac) represents the voltage
protection function, which is a piece-wise algebraic function.

The parameter definitions are given in Table 1. Here we only
summarise the dynamic equations that will be used in the order
reduction. The complete detailed mathematical model can be found
in [20].

4 Reduced-order WECC composite load model
In this section, we will derive the reduced-order large-signal model
of WECC composite load model using singular perturbation
method. For the purpose of order reduction, we only focus on the
dynamic components. These components are connected in parallel
and we will reduce each individual component's order.

4.1 Reduced-order three-phase motors model

Each three-phase motor model has five states,
x
~

M = Eq′ , Ed′ , Eq″, Ed″, s . When applying Algorithm 1 (Fig. 2), the
first step is to identify the slow and fast dynamics. Since the fast
dynamics are characterised by the small perturbation coefficient ε,
we rewrite the left-hand-side of the dynamic equations as

Tp0Ėq′ , Tp0Ėd′ , Tpp0Ėq″, Tpp0Ėd″, Hṡ
T

. (47)

Given one set of parameter setting in Table 2, (47) becomes

0.1Ėq′ , 0.1Ėd′ , 0.0026Ėq″, 0.0026Ėd″, 0.1ṡ
T

. (48)

The smaller perturbation coefficients in (48) suggest that dynamic
response velocities of Eq′ , Ed′ , s

T are much slower than the rest of
the states. This difference is also an evidence of the two-time-scale
property of this model. Then the slow and fast dynamics are
divided as ẋ̄M = ẋM, żM

T, where xM = Eq′ , Ed′ , s
T, zM = Eq″, Ed″

T.
For consistency, denote the input voltages Vq, Vd

T as UM.
Following the singular perturbation method (1)–(5), we can obtain
the reduced-order large-signal model of three-phase motor as

ẋM1 =
1

Tp0
−xM1 − id Ls − Lp − ω0 TP0 xM2 xM3 , (49)

ẋM2 =
1

Tp0
−xM2 + iq Ls − Lp + ω0 TP0 xM1 xM3 , (50)

ẋM3 =
TL − p ⋅ h2 xM ⋅ id − q ⋅ h1 xM ⋅ iq

2H
, (51)

Fig. 4  Block diagram of DER_A in the WECC composite load model developed by [15]
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where the QSS solutions are

h1 xM =
1

rs
2 + Lp

2 LpLpp + rs
2

xM1 − Lp − Lpp rsxM2

− Lp − Lpp LpU1 − Lp − Lpp rsU2 ,
(52)

h2 xM =
1

rs
2 + Lp

2 Lp − Lpp rsxM1 − LpLpp + rs
2

xM2

+ Lp − Lpp rsU1 − Lp − Lpp LpU2 .
(53)

Denote x̄M3 = 1 − xM3. The other algebraic equations are

TL = Tm0 A x̄M3
2 + B x̄M3 + C0 + D x̄M3

Etrq , (54)

Tm0 = p ⋅ h2 xM ⋅ id + q ⋅ h1 xM ⋅ iq, (55)

iq =
rs

rs
2 + Lp

2 UM1 + xM1 −
Lp

rs
2 + Lp

2 UM2 + xM2 , (56)

id =
Lp

rs
2 + Lp

2 UM1 + xM1 +
rs

rs
2 + Lp

2 UM2 + xM2 . (57)

By solving (23), we can find a pair of solution
(T , ε

∗ ∗ ) = (0.012, 0.035). Since εM = 0.0026 < 0.035, the
solutions of fast dynamics z^M converge to h(x^M) exponentially fast
within time 0.012 s which is short enough. Therefore, we can use

Table 1 Parameter definition of DER_A model [15]
Parameter Definition
Trv transducer time constant (s) for voltage measurement
Tp transducer time constant (s)
Tiq Q control time constant (s)
Vref0 voltage reference set-point > 0(pu)

Kqv proportional voltage control gain (pu/pu)
Tg current control time constant (s)
PfFlag 0 − constant Q control, and 1 − constant power factor control
Imax maximum converter current (pu)
dbd1 lower voltage deadband ⩽ 0(pu)

dbd2 upper voltage deadband ⩾ 0(pu)

Tv time constant on the output of voltage/frequency cut-off
Vl0 voltage break-point for low voltage cut-out of inverters
Vl1 voltage break-point for low voltage cut-out of inverters
Vh0 voltage break-point for high voltage cut-out of inverters
Vh1 voltage break-point for high voltage cut-out of inverters
tvl0 timer for Vl0 point
tvl1 timer for Vl1 point
tvh0 timer for Vh0 point
tvh1 timer for Vh1 point
Vrfrac fraction of device that recovers after voltage comes back to within Vl1 < V < Vh1

Trf transducer time constant (s) for frequency measurement (must be ⩾ 0.02 s)
Kpg active power control proportional gain
Kig active power control integral gain
Ddn frequency control droop gain ⩾ 0 (down-side)
Dup frequency control droop gain ⩾ 0 (up-side)
f emax frequency control maximum error ⩾ 0(pu)

f emin frequency control minimum error ⩽ 0(pu)

f dbd1 lower frequency control deadband ⩽ 0(pu)

f dbd2 upper frequency control deadband ⩾ 0(pu)

Freqflag 0 − frequency control disabled, and 1 − enabled
Pmin minimum power (pu)
Pmax maximum power (pu)
Tpord power order time constant (s)
dPmin power ramp rate down < 0(pu/s)

dPmax power ramp rate up > 0(pu/s)

Vtripflag 0 − voltage tripping disabled, 1 − enabled
Iql1 minimum limit of reactive current injection, p.u.
Iqh1 maximum limit of reactive current injection, p.u.
Xe source impedance reactive > 0( pu)

Ftripflag 0 − frequency tripping disabled, 1 − enabled
PQflag 0 − Q priority, 1 − P priority − current limit
typeflag 0 − the unit is a generator Ipmin = 0, 1 − the unit is a storage device and Ipmin = − Ipmax

Vpr voltage below which frequency tripping is disabled
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only the QSS solution h(x^M) to represent the solution of fast
dynamics.

4.2 Reduced-order DER_A model

The DER_A model has ten states in total, x
~

D = S0, S1, …, S9
T.

Different from the three-phase motor model, due to the existence of
switches such as Pfflag and PQflag, the DER_A model is actually a
switching system consisting of 26 = 64 subsystems. Each
subsystem is determined when the switches are fixed. Since these
switches are preset, we only need to derive the reduced-order

model for each subsystem. For brevity, we give the reduced-order
model for one of the subsystems to illustrate the model order
reduction procedure. The reduced-order models for other
subsystems can be obtained using the same method.

To find ε, we rewrite the dynamics as
(see (58)) 
Given the parameter setting in Table 3, (58) becomes (see

(59)) . The smaller perturbation coefficients in (59) suggest that
dynamic response velocities of S0, S1, S5, S7

T are much slower than
other states. This difference is also an evidence of the two-time-
scale property of this model. Then the slow and fast dynamics are

Table 2 Parameter setting of three-phase motor model
Motor A Motor B Motor C
rsA 0.04 rsB 0.03 rsC 0.03
LsA 1.8 LsB 1.8 LsC 1.8
LpA 0.1 LpB 0.16 LpC 0.16
LppA 0.083 LppB 0.12 LppC 0.12
TpoA 0.092 TpoB 0.1 TpoC 0.1
TppoA 0.002 TppoB 0.0026 TppoC 0.0026
HA 0.05 HB 1 HC 0.1
AA 0 AB 0 AC 0
BA 0 BB 0 BC 0
CA 0 CB 0 CC 0
DA 1 DB 1 DC 1
EtrqA 0 EtrqB 2 EtrqC 2
pA -1 pB -1 pC -1
qA -1 qB -1 qC -1
ω0A 120π ω0B 120π ω0C 120π

 

Table 3 Parameter setting of DER_A model (base: 12.47 kV and 15.0 MVA)
Parameters Values Parameters Values
Trv 0.1 s Tp 0.1 s
Tiq 0.005 s Vref0 0 pu
Kqv 5 pu/pu Tg 0.005 s
Pfflag 1 Imax 1.2 pu
dbd1 −0.05 pu dbd2 0.05 pu
Tv 0.005 s Vl0 0.44 pu
Vl1 0.49 pu Vh0 1.2 pu
Vh1 1.15 pu tvl0 0.16 s
tvl1 0.16 s tvh0 0.16 s
tvh1 0.16 s Vrfrac 0.7
Trf 0.1 s Kpg 0.1 pu
Kig 10 pu Ddn 20 pu
Dup 0 pu f emax 99 pu
f emin −99 pu f dbd1 −0.0006

f dbd2 0.0006 Freqflag 0
Pmin 0 pu Pmax 1.1 pu
Tpord 0.005 s dPmin −0.5 pu/s

dPmax 0.5 pu/s Vtripflag 1
Iql1 −1 pu Iqh1 1 pu
Xe 0.25 pu Ftripflag 1
PQflag 0 typeflag 1
Vpr 0.8 pu a 0.8 pu
b 5 s c 1 s
d 0.9 pu  
 

TrvṠ0, TpṠ1, TiqṠ2, TgṠ3, TvṠ4, TrfṠ5, Tp ⋅ TrfṠ6, Ṡ7, TpordṠ8, TgṠ9
T

. (58)

4894 IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 21, pp. 4888-4897
© The Institution of Engineering and Technology 2020

 17518695, 2020, 21, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-gtd.2020.0972 by Iow

a State U
niversity L

ibrary, W
iley O

nline L
ibrary on [03/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



divided as ẋ̄D = ẋD, żD
T, where xD = S0, S1, S5, S7

T,
zD = S2, S3, S4, S6, S8, S9

T. Define the terminal voltage and
frequency Vt, Freq  as UD. Following the same procedure as
above (1)–(5), we can derive the reduced-order large-signal model
of DER_A as

ẋD1 =
1

Trv
UD1 − xD1 , (60)

ẋD2 =
1
Tp

xD4 − xD2 , (61)

ẋD3 =
1

Trf
UD2 − xD3 , (62)

ẋD4 = 0 . (63)

To obtain the output power, we also need to calculate the output
currents, which are identified as fast states. According to
Algorithm 1 (Fig. 2), there are two options to represent the
solutions of fast dynamics depending on the magnitude of ε. For
simplicity, it it better to use only the QSS solution to represent the

fast states since it does not require solving the boundary-layer
model. Let ε ∗ ∗ = 0.06 to make sure max {εD} < ε

∗ ∗ , then solving
(23), we obtain T = 0.242 s. This means if we use only the QSS
solutions, the solution of fast dynamics is inaccurate within 0.242
s. This time period is intolerably long for stability analysis.
Therefore, we should use z = h + y^ by solving the boundary-layer
model. The d–q axis currents id and iq are states S3 (zD2) and S9 (zD6),
respectively. Their equations are

iq = sat2 γ(xD) × VP xD1, Vrfrac + y^D2, (64)

id = sat9
sat7(xD4)
sat1 xD1

× VP xD1, Vrfrac + y^D6, (65)

γ(xD) =
tan pfaref xD2

sat1 xD1
+ Kqvsat3 DBV Vref0 − xD1 , (66)

where y^D2 and y^D6 are the solutions of boundary-layer model

ẏD1 = −yD1, (67)

ẏD2 = yD3 − yD2 − VP xD1, Vrfrac ×

sat2 γ(xD) + sat2 yD1 + γ(xD) ,

ẏD3 = −yD3,
(68)

ẏD4 = −TrfyD5, (69)

ẏD5 = −yD5, (70)

ẏD6 = − sat9
sat7(xD4)
sat1 xD1

−yD6 × VP xD1, Vrfrac (71)

+sat9

sat7(yD5 + xD4)
sat1 xD1

× yD3 + VP xD1, Vrfrac . (72)

5 Model validation via simulation
In this section, the reduced-order models of three-phase motors and
DER_A are tested in Matlab using different solvers. We compare
the performance of reduced-order model with original model to
verify the effectiveness of the proposed high-fidelity order
reduction approach. Moreover, we compare the computational time
between two models using different solvers to show the reduction
of computational burden.

5.1 Validation of reduced-order three-phase motors

To verify the proposed reduced-order model of three-phase motor,
we simulate the reduced and original model in Matlab with the
same input voltage. Consequently, we can compare their output
power and other states. Refer to an EPRI white paper [15, 21], this
paper tests a voltage sag benchmarking bus voltage input that is
generated by (73). The parameters are set as Table 2 referring to
[22].

V t =

a if 1 ⩽ t < 1 + b/60

(1 − d)(t − 1 − c)
b/60 − c

+ 1 if 1 + b/60 ⩽ t < 1 + c

1 otherwise

(73)

Figs. 5–7 show the state responses of Eq′  and Ed′  for three-phase
motors A, B and C, respectively. The blue solid lines denote Eq′  and
Ed′  of the original model, while the red dashed lines represent those
of the reduced-order model. Figs. 8–10 show the output real and
reactive powers. The blue solid lines denote the real and reactive
power of the original model, while the red dashed lines represent

0.1Ṡ0, 0.1Ṡ1, 0.005Ṡ2, 0.005Ṡ3, 0.005Ṡ4, 0.1Ṡ5, 0.1 ⋅ 0.1Ṡ6, Ṡ7, 0.005Ṡ8, 0.005Ṡ9
T

. (59)

Fig. 5  Dynamic responses of Ed′ and Eq′ of reduced/original models of
three-phase motor A

 

Fig. 6  Dynamic responses of Ed′ and Eq′ of reduced/original models of
three-phase motor B
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those of the reduced-order model. The mean squared errors of real
and reactive power between the original and reduced-order model
are shown in Table 4. The small errors show the accuracy of the
proposed reduced-order three-phase model. Moreover, if using
ODE45, which is a solver for non-stiff ODE problems, the
computational time of the original and reduced-order model are
8.8120 and 0.1926 s, respectively. If using ODE15 s, which is a
stiff ODE solver, the computational time of the original and
reduced model are 1.0975 and 0.1785 s, respectively. This
comparison shows that the singular perturbation method converts
the original high-order stiff problem to a reduced-order non-stiff
problem while considerably reducing the computational time. This
reduction will be more significant in large-scale system with
multiple composite loads.

5.2 Validation of DER_A model

Similar to the verification of three-phase motor, we simulate the
original and reduced-order model of DER_A in Matlab. The
voltage input is the same as (73). The frequency input is set to be
60 Hz. The parameter setting follows the reliability guideline in
[23] as Table 3.

Fig. 11 shows the dynamic responses of DER_A. The blue lines
denote the output powers of original model, while the red lines
represent those of reduced one. Fig. 12 shows filtered voltage Vtfilt,
filtered generated power Pgenfilt, and filtered current iq and id of
reduced and original model of DER_A. The mean square errors

(MSEs) of real and reactive power are 7.1363 × 10−4 and
1.3045 × 10−5, respectively. Further, the computational time of
original and reduced-order model using ODE45 are 11.205 and
0.2074 s, respectively; the computational time of original and
reduced-order model using ODE15s are 2.0012 and 0.1598 s,
respectively.

6 Conclusion
This paper proposes a high-fidelity LSOR approach for the latest
WECC composite load model including DER_A. The derived
reduced-order model has guaranteed high accuracy that can replace
the original load model in high-order system simulation to perform
power system studies. This replacement can significantly reduce
the difficulty of stability analysis and computational burden. The
simulation results verify the accuracy and efficiency of the
proposed algorithm.

Fig. 7  Dynamic responses of Ed′ and Eq′ of reduced/original models of
three-phase motor C

 

Fig. 8  Real/reactive powers of reduced/original models of three-phase
motor A

 

Fig. 9  Real/reactive powers of reduced/original models of three-phase
motor B

 

Fig. 10  Real/reactive powers of reduced/original models of three-phase
motor C

 
Table 4 Mean squared errors between original and
reduced-order model of three-phase motors
Power Mean squared error

Motor A Motor B Motor C
real power 1.0509 × 10−4 1.1295 × 10−4 8.0264 × 10−5

reactive power 1.1422 × 10−5 1.4294 × 10−5 2.1112 × 10−5
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Fig. 11  Real and reactive power of reduced and original model of DER_A
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