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Abstract—Fast and accurate load parameter identification has
a large impact on power systems operation and stability analysis.
This article proposes a novel Imitation and Transfer Q-learning
(ITQ)-based method to identify parameters of composite con-
stant impedance-current-power (ZIP) and induction motor (IM)
load models. Firstly, an imitation learning process is introduced
to improve the exploitation and exploration processes. Then, a
transfer learning method is employed to overcome the challenge
of time-consuming optimization when dealing with new identifica-
tion tasks. An associative memory is designed to realize dimension
reduction, knowledge learning and transfer between different
identification tasks. Agents can exploit the optimal knowledge
from source tasks to accelerate the search rate in new tasks
and improve solution accuracy. A greedy action selection rule is
adopted for agents to balance the global and local search. The
performance of the proposed ITQ approach has been validated
on a 68-bus test system. Simulation results in multi-test cases
verify that the proposed method is robust and can estimate load
parameters accurately. Comparisons with other methods show
that the proposed method has superior convergence rate and
stability.

Index Terms—Load modeling, parameter identification, trans-
fer learning, reinforcement learning, imitation learning.

I. INTRODUCTION

AS AN important part of power system analysis, electrical
load modeling has a critical impact on the stable oper-

ation of power grids [1]–[3]. Incorrect load models may lead
to completely biased results for system operation status and
stability evaluation [4]–[7]. Due to time-variability, complex
composition and non-linearity, fast and accurate load modeling
still remains a challenging problem. Therefore, it is imperative
to identify load model parameters accurately and rapidly to
help provide more reliable results for real-time power system
operation.
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Based on load models’ characteristics, conventional load
models can be categorized into three types: static load mod-
els, dynamic load models and composite load models. In static
load models, active and reactive power can be expressed as
functions of bus voltage and frequency. Common static load
models include static load model which comprised of con-
stant impedance Z, constant current I and constant power P
loads (ZIP) model [8] and exponential model [9]. Dynamic
load models can represent the relationship between load
active/reactive power and bus voltage. Representative dynamic
loads are induction motor (IM) load and exponential recovery
load model (ERL) [10]. IM load model is considered to be a
physical model since it is derived from the equivalent circuit of
an IM [11]. Numerous studies have shown that a single static
or dynamic model cannot sufficiently replicate the dynamic
behavior of the actual load. Therefore, composite load mod-
els, combining ZIP and IM have been adopted by most of the
utilities to represent the actual load, which can provide more
accurate characteristics [12].

Previous works have focused on measurement-based load
identification and parameter estimation. Measurement-based
methods can be classified into two categories: artificial neural
network (ANN)-based methods and optimization-based meth-
ods. The ANN-based methods do not require any pre-defined
physical load models and can update load outputs (i.e., active
and reactive powers of loads) using the measurements in real-
time. A deep learning-based technique was proposed in [13]
to identify time-varying load parameters.

Optimization-based parameter estimation algorithms usu-
ally pre-define a load structure and then try to search for the
optimal parameters to minimize the error between the actual
power measurements and the estimated power responses.
These methods can be divided into statistical techniques and
heuristic techniques. Common statistical search techniques
include least square (LS) method, maximum likelihood method
and gradient-based method. In [14], a weighted LS method
was utilized to estimate the parameters of a first order IM.
However, LS methods are sensitive to outliers. Also, it can
be difficult to determine the exact load parameters when the
estimation process is performed over only a small number of
replicated observations. A maximum likelihood approach was
adopted in [15] to estimate load parameters. The two disadvan-
tages of this method are that it is based on strong assumptions
on the data structure and is sensitive to the choice of initial val-
ues. In [16], a gradient-based method was proposed to estimate
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Fig. 1. Equivalent circuit of composite ZIP and IM load model [3].

parameters of a fifth-order IM load. However, gradient-based
methods are sensitive to the learning rate and depend on proper
initialization.

As for heuristic techniques, genetic algorithm (GA) [2]
has been widely adopted to estimate the parameters of load
models. GA-based methods are sensitive to the distribu-
tion of initial population of candidate solvers. In addition,
premature convergence is another issue that should be con-
sidered when solutions are generated. An improved particle
swarm optimization (IPSO) method has been applied in [17]
to identify the unknown composite load model parameters.
Unfortunately, most of the above methods are unable to exploit
the prior optimization knowledge when dealing with new
optimization tasks, which will result in an inefficient search
when dealing with new load parameter identification tasks.

In this article, we cast the optimization problem of param-
eter identification for composite load model as a learning
task. In applications involving non-linear optimization prob-
lems, reinforcement learning (RL) methods have been adopted
to efficiently obtain optimal solutions [18]. During the RL
process, agents execute actions and update their states based
on designed exploration and exploitation rules. When apply-
ing RL method in power system, agents can be viewed as
the candidate solutions, such as estimated load parameters;
actions are used to tune the position of agents, i.e., tune the
value of estimated load parameters. As an efficient RL method,
Q-learning has been widely used for online optimization and
control [19], [20]. However, similar to heuristic approaches,
RL methods can suffer from inability to store prior agent
knowledge since the initial state and action values are usually
set to zero when dealing with a new optimization task, which
results in time-consuming performance when identifying a
large number of load parameters.

Recently, transfer learning has emerged as a more suitable
alternative due to its ability to compensate the shortcom-
ing of conventional RL by exploiting the prior knowledge
obtained in previous time periods (i.e., source optimization
tasks) [21]. This can significantly reduce the computational
time for load parameter identification. In addition, imitation
learning can guide a RL agent to take a more effective explo-
ration at the initial period of RL search process and improve
the exploration efficiency. Motivated by the advantages of imi-
tation learning, a novel Imitation and Transfer Learning based
Q-learning (ITQ) approach is proposed in this article, which
aggregates Q-learning, transfer learning and imitation learn-
ing. The proposed method mitigates the computational burden
and improves the accuracy of load parameter identification.

The main contributions of this article can be summarized as
follows:

• In the pre-learning stage of dealing with source
optimization tasks, imitation learning is introduced to
guide the RL agent to execute a more informative explo-
ration instead of a random one.

• When dealing with a new identification task, knowledge
transfer process is conducted based on the similarity
between new tasks and source tasks to help a RL agent to
effectively perform generalizations based on its previous
experiences that are encoded within a pre-learned knowl-
edge matrix.

• A swarm of agents are employed in the learning pro-
cess to further accelerate learning rate. These interactive
agents update their knowledge matrices simultaneously
and share their optimal solutions during learning process.

• A greedy random search rule is developed in RL pro-
cess to ensure that the proposed method can obtain high
quality solutions over time.

The rest of this article is structured as follows: Section II
describes the composite load model structure. Section III
presents the basic principles of ITQ. The framework of
ITQ based load model parameters identification is given in
Section IV. Simulation results are presented in Section V, and
Section VI concludes this article.

II. COMPOSITE LOAD MODEL STRUCTURE

An equivalent circuit of composite load model, consists of
static ZIP and dynamic IM components connected in parallel is
shown in Fig. 1. The mathematical descriptions of the active
and reactive power of the ZIP component are expressed as
follows:
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where PZIP,0, QZIP,0, V0 are active, reactive power and root-
mean-square (RMS) value of voltage in the steady state
before disturbance and V is the bus voltage magnitude at a
given time. In addition, ZIP parameters ap, bp and cp satisfy
ap + bp + cp = 1, and aq, bq and cq satisfy aq + bq + cq = 1.

The parameters of the IM component include: stator resis-
tance Rs, rotor resistance Rr, stator reactance Xs, and rotor
reactance Xr, magnetizing reactance Xm, and the slip s.

The IM component dynamics can be expressed as follows:
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where H is the rotor inertia constant; A, B and C denote the
torque coefficients and satisfy Aω2 + Bω + C = 1; ω = 1 − s
represents the rotation speed of the induction motor; E′

d and E′
q
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refer to the d-axis and q-axis transient electromagnetic fields
(EMF) of the IM. Id and Iq are the d and q axes currents, with
detailed expressions given in [3].

Given the dynamic states, parameters and bus voltage, the
active and reactive power of the IM model are determined as
follows:

PIM = UdId + UqIq (6)

QIM = UqId − UdIq (7)

where the d-axis bus voltage Ud and the q-axis bus voltage
Uq satisfy the following equation:

V =
√

U2
d + U2

q (8)

By aggregating the ZIP and IM active (reactive) powers, we
can obtain the total active and reactive power of the composite
load model [3]. In addition, another important parameter of the
composite load model, is the ratio of the initial active power
of the IM to the total load, which is defined as:

Kpm = PIm,0

P0
(9)

where P0 denotes the initial active power of the composite
load before disturbance and PIm,0 is the initial active power
of the equivalent IM.

Traditionally, the 13 parameters in equations (1)-(9) which
have to be identified to fully capture the composite model, are
as follows:

θ = [
Rs, Xs, Xm, Xr, Rr, H, A, B, ap, bp, aq, bq, Kpm

]
The parameter identification process can be written as an

optimization problem with the objective function of min-
imizing the sum of squared difference between the esti-
mated active/reactive power and the measured active/reactive
power, as:

min
θ

h(θ) =
∑L

k=1

[
(Pθ (k) − P(k))2 + (Qθ (k) − Q(k))2]

L
(10)

where L is the number of measurement samples; Pθ (k) and
P(k) are the estimated and measured active power; Qθ (k) and
Q(k) are estimated and measured reactive power; h is the
objective function representing the load model output error.

III. BASIC PRINCIPLES OF ITQ

The overall process of implementing the ITQ is shown
in Fig. 2, which includes 4 main steps: 1) RL agents learn
the optimal solution for source identification tasks based on
Q-learning method and store the optimal knowledge (solu-
tion) in knowledge matrix (Q-table); 2) Other agents adopt
Levenberg-Marquardt algorithm (L-M) [2] to deal with the
source tasks and RL agents learn from them for a more effi-
cient search during the initial phase via imitation learning;
3) When dealing with a new load parameter identification task,
defining and computing the similarities between source tasks
and new task; 4) estimating the optimal knowledge matrix for
the new task by exploiting the previous optimal knowledge
via transfer learning.

Fig. 2. Basic principle of ITQ method.

Fig. 3. Basic principle of associate memory.

A. Q-Learning

Similar to other classical RL methods, Q-learning aims to
obtain an optimal policy such that a reward, R, is maximized.
In the Q-learning algorithm, an agent observes the current state
s and executes an action a. The system observes the corre-
sponding results and samples a reward to the agent. The agent
receives the reward and updates the Q-value corresponding
to the action-state, which represents the expected estimated
accumulated reward for the action-state pair. After each state
transition, a new action is selected, resulting in a new state
and a new reward. By continuous exploitation and explo-
ration, the agent will eventually obtain the optimal Q-table
which determines the action selection policy. In load parame-
ter identification task, each agent can be viewed as a particle
which contains estimated load parameters; actions are used
to tune the value of estimated load parameter. However, there
are two disadvantages for traditional Q-learning method: 1) the
dimension of Q-table will increase dramatically if the number
of controllable variables or the alternative actions increase;
2) using a single RL agent leads to a low knowledge learning
efficiency.

However, the curse of dimensionality will emerge if the
number of controllable variables grows too large in conven-
tional Q-learning. Assuming that the number of alternative
actions for a controllable variable xi to be mi , then the dimen-
sion of action set |A| = m1m2 · · · mn , where n is the number
of controllable variables. If n increases significantly, the space
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and time complexity will increase hugely and the problem
becomes intractable.

In order to avoid the curse of dimensionality, an asso-
ciative memory is adopted to reduce the state-action space
by decomposing the large-scale knowledge matrix (Q-table)
into multiple lower-dimensional spaces [19]. As illustrated in
Fig. 3, instead of adopting an extremely large-scale action set
|A| to denote the optimization space of all the controllable
variables, the multiple small-scale action sets (A1, A2, . . . , An)
are adopted to represent the action space of each controllable
variable. Consequently, each controllable variable has a cor-
responding memory matrix Qi. Under such framework, the
dimension of memory matrix can be greatly decreased.

Hence, each variable has a corresponding knowledge matrix.
Once the action of the previous variable is determined, this
action is taken as the state of the next variable, thereby form-
ing a chain connection. By adopting the associative memory,
the physical meaning of state is the same as action for
load parameter identification task. A swarm of agents are
adopted to improve the knowledge learning rate as there are
multiple agents executing actions at the same time, which leads
to simultaneous updates in Q-values of multiple state-action
pairs. After introducing the swarm of agents, the ith memory
matrix can be updated as:
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where α is the learning rate; i (i = 1, 2, . . . , n) denotes the ith
variable and j (j = 1, 2, . . . , L) represents the jth agent; n and
L are the number of variables and agents, respectively; γ is
the discount factor; subscript k denotes the iteration number;
Ai denotes to the action space of agent i. �Q is the knowl-
edge increment; (sk, ak) denotes the state-action pair at the kth
iteration; R(sk+1, sk, ak) is the feedback reward of transition
from state sk to sk+1 after executing action ak.

RL methods often adopt a pure strategy of greedy actions or
a random global search strategy. In general, local search based
on greedy strategy tends to cause the algorithm to fall into
a local optimum, while random global search strategy tends
to result in a long optimization time. Therefore, this article
uses the ε-greedy strategy [18] to effectively balance the local
search and the global search, as follows:

aij
k+1 =

{
arg maxai∈Ai

Qi
k

(
sij

k+1, ai
)
, if ε ≤ ε0

as Otherwise
(12)

where ε0 is a random number with a probability uniformly
distributed in [0, 1]; ε is the exploitation rate representing
the probability of a greedy action (exploitation); as denotes a
random action (global search).

After agents execute their actions, a reward is received to
evaluate corresponding state-action pair by each agent. In gen-
eral, an agent will receive a larger reward if the executed
action results in a better solution (i.e., smaller objective value).

Hence, the reward rule is designed as follows:

Rij
(

sij
k+1, sij

k , aij
k

)
=
{

1
hk+1

j
, if hk+1

j ≤ hk
j

0, otherwise
(13)

where hk
j is the objective function of the jth agent after the

kth iteration.

B. Learning Efficiency Improvement via Imitation Learning

For a new identification task, RL agents need to execute
a series of random exploitation and exploration processes to
obtain the optimal policy, which consumes quite a long time
without any prior knowledge and cannot meet the requirement
for online load identification.

Thus, imitation learning is adopted in this section to accel-
erate the random search process during the initial phase of
search. In the imitation process, RL agents can be regarded
as students, which can learn and imitate other Âăteachers
with more knowledge. In order to better guide the RL agents
to update the knowledge matrix during the initial phase, a
highly efficient L-M method is adopted as the teacher. The
L-M algorithm is a gradient descent method. The parameter
set θ updating process for L-M method is as follows:

θi+1 = θi + (
JTJ + λI

)−1
JTh(θi) (14)

where θi denotes the estimated parameter set in the ith iteration
step; J is the Jacobian matrix which can be obtained by calcu-
lating the first-order partial derivatives of estimated outputs to
each parameter; λ represents the step size and I is the identity
matrix.

In addition, L-M is sensitive to initial conditions and may
diverge outside of the defined ranges or be trapped in a local
optimal solution. In order to address these issues, some agents
learn knowledge from L-M to select the state-action pair and
update the knowledge matrix, the other agents update knowl-
edge based on Q-learning and ε-greedy rule shown in (12).
After each iteration, the rewards of all agents are calcu-
lated, shared and sorted. The corresponding state-action pair
with the largest reward is transmitted to all imitative teach-
ers (L-M agents). In a new iteration, the agents with larger
rewards execute actions based on Q-learning principle with
ε-greedy policy, while other agents with smaller reward learn
from L-M to select state-action pair.

C. Knowledge Transfer via Transfer Learning

Transfer learning can be applied to discover domain-
invariant intrinsic features and structures underlying two
different but related domains, which establishes successful
transfer and re-utilization of data information across domains.
ITQ agents obtain optimal knowledge matrices (Q-tables)
for source parameter identification tasks (source tasks) dur-
ing the pre-learning process, the prior knowledge are then
exploited as the initial knowledge matrices of a new parameter
identification task (new task), thereby avoiding agents’ blind
explorations and improving search efficiency. This transfer

Authorized licensed use limited to: Iowa State University Library. Downloaded on December 04,2023 at 04:41:40 UTC from IEEE Xplore.  Restrictions apply. 



1678 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 2, MARCH 2021

TABLE I
NUMERICAL INTERVAL OF LOAD PARAMETERS

process is designed as:

Q0
ni

=
E∑

e=1

reQ∗
ei, i = 1, 2, . . . , N (15)

where Q0
ni

denotes the initial knowledge matrix of the ith vari-
able in the new task; Q∗

ei represents the optimal knowledge
matrix of the ith parameter in the eth source task; re repre-
sents the similarity between the new task and the eth source
task and the detailed definition of similarity between two load
parameter identification tasks are described in Section IV; E
denotes the number of the source task.

IV. DESIGN OF ITQ FOR LOAD PARAMETER

IDENTIFICATION

In this section, the detailed steps and overall procedure to
apply ITQ for load parameter identification are introduced
according to the principle of ITQ.

A. Action-State Design

Although load parameters of the power system vary at
different times, they always change around typical values.
A larger range will affect the speed and accuracy of the
algorithm, while a smaller range may exclude actual values.
Therefore, in addition to algorithm performance, the range of
each load parameter should be pre-designed based on its typ-
ical value in real power systems. In this article, the range of
the parameter to be identified is proposed based on the typical
value in actual power systems and the former related research
in [12], [17], [22], as shown in Table I.

In general, the standard Q-learning algorithm is based on
discrete Markov processes, which cannot be directly applied
to the solution of continuous variables optimization prob-
lems. The discretization method is the most direct means
to solve this problem at present. Hence, the continuous
variables are divided into discrete intervals to approximate
the optimal solution of the original problem with sufficient
accuracy. In this article, the searching space of each contin-
uous parameter is divided into 50 parts. For example, the
search space for mi which denotes the ith parameter in θ

is [ mi1 mi2 · · · mi50 ],which is sorted in an increasing
order. To associate ITQ method with load parameters identi-
fication, we can define Idi ∈ [1, 50] as an index for the ith
load parameter. Then, state si can be viewed as the current
index of the ith estimated load parameter, that is si = Idi. For

instance, si = 3 means current estimation of the ith parameter
is the 3rd number within the 50 parts.

Then, the action of each variable (load model parameter) is
defined by:

Ai = {
ai,1 ai,2 · · · ai,50

}
(16)

where Ai denotes the ith variable’s action set; ai,k

(k = 1, 2, . . . , 50) denotes the kth action of the ith load param-
eter. For instance, ai = 5 means the agent selects the 5th
number within the 50 parts for current iteration episode. As
stated in Section III, the action set of each variable is the state
set of the next variable, i.e., Ai = Si+1. For the first variable,
the state set is equivalent to the action set.

B. Reward Function Design

According to the description in Section III, the reward of
each agent can be obtained by (13) after each iteration and a
smaller objective lead to a larger reward.

C. Knowledge Transfer Design

The key to determine the transfer quality is the definition
of the similarity between source task and new task. From (10)
we can see that the optimization task of load parameters iden-
tification is determined by the bus voltage, active and reactive
power. Hence, Fréchet distance [23] is adopted to measure
the similarity between bus voltage curves, active and reactive
power curves in the source tasks and new task. The Fréchet
distance between the two curves is the length of the shortest
leash sufficient for both to traverse their separate paths, which
takes into account the location and ordering of the points along
the curves. This method is widely used in curve similarity anal-
ysis. Let F and G be the bus voltage curves in the source task
and new task, and the length for each curve are T and W. The
bus voltage in the source task is given as a function of time by
F(α(t)) and G(β(t)), where α(t) and β(t) are two increasing
functions and α(0) = 0, α(1) = T, β(0) = 0, β(1) = W.
Mathematically, the Fréchet distance between the two curves
is defined as:

δF(F, G) = inf
α,β

max
t∈[0,1]

{d(F(α(t)), G(β(t)))} (17)

where d is the Euclidean distance function.
Hence, the similarity between two bus voltage curves is

determined by the equation:

SU(F, G) = 1 − infα,β maxt∈[0,1]{d(F(α(t)), G(β(t)))}
supα,β maxt∈[0,1]{d(F(α(t)), G(β(t)))} (18)

where SU(F, G) ∈ [0, 1], a value near 1 indicates more simi-
larity between the two curves, while a value near 0 indicates
less similarity between them.

Similarly, Fréchet distance between active (reactive) power
curves are noted as SP and SQ. Then, similarity between
the source load parameter identification tasks and the new
identification task is defined as:

r = 1/3(SU + SP + SQ). (19)
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D. ITQ Parameters Setting

Suitable parameters can improve the performance of ITQ
and reduce the calculation time, hence, it is crucial to choose
appropriate parameters based on the generic guidelines [18]:

• The learning rate α directly determines to what extent
newly acquired information overrides old information.
A larger α can achieve a faster convergence rate but
with a higher probability of falling into the local optimal
solution. Conversely, a smaller α can lead to a slower
convergence rate but ensure a higher-quality solution.

• The discount factor γ determines the importance of
future rewards. Since the current optimal solution of load
parameters is significant, a smaller γ should be chosen.

• The exploration rate ε allows agents to explore new action
with a certain probability. A larger ε drives agents to
select a greedy action rather than explore a random action.

Based on the guidelines, the four parameters of ITQ for
load parameter identification can be chosen by a few trial-and
error experiments and are shown in Table II. Case studies in
Section V verify that these values can be viewed as a general
parameters for load parameter identification task.

E. Overall Procedure

The overall process to implement the approach is shown
in Fig. 4, where kmax denotes the maximum iteration steps
and ‖Qk+1

i − Qk
i ‖2 is the Euclidean norm of Q-value differ-

ences, and ζ is the convergence coefficient. As shown in Fig. 4,
the pre-learning process is firstly executed to accumulate the
optimal knowledge from the source tasks, then, agents’ action
strategy in the new task is initialized with transfer learning,
thereby accelerating the optimization process. In real power
systems, dynamic measurements can be collected after dis-
turbance which happens in chronological order. The source
task is to identify load parameters after an earlier disturbance,
while the new task is the identification task based on later
disturbance.

V. CASE STUDY

This section evaluates the effectiveness of the proposed
approach. The estimated results from ITQ are compared with
that of the whale optimization algorithm (WOA) [24], Grey
wolf optimizer (GWO) [24], IPSO [17], and classical L-M
method [2]. These methods are newly invented and has been
verified that they outperform GA and PSO. In order to gener-
ate the fault data, dynamic simulations are conducted on the
New England 68-bus test system with composite ZIP and IM
loads [13]. All simulations are undertaken in MATLAB Power
System Tool (PST) and the sampling rate is 100Hz. The pop-
ulation size and the maximum iteration step are set as 30 and
1000 for each heuristic optimization algorithm. For ITQ, the
parameters are shown in Table II.

A. Simulation Model

The 68-bus test system is a reduced-order model of the New
England/New York interconnected system [13]. It contains 16
generators, 68 buses and 29 loads. Each load is described
as a composite load with ZIP and IM. Load parameters

Fig. 4. Overall Procedure of ITQ.

TABLE II
PARAMETERS USED IN ITQ

identification process is carried out for the load connected to
bus 27.

B. Pre-Learning Process

A pre-learning process needs to be firstly executed to accu-
mulate the optimal knowledge matrices from the source tasks
for ITQ algorithm. Therefore, 5 different tasks are simulated
and tasks 1 and 2 are taken as source tasks. True load param-
eters in each task are shown in Table III. In task 1 and 3, fault
occurs on the line between bus 60 and bus 61; in task 2 and 4,
fault occurs on the line between bus 18 and bus 49; in task 5,
fault occurs on the line between bus 19 and bus 68. The Fault
type is three phase fault in all tasks.

As stated in Section III, an associative memory is designed
to realize dimension reduction by decomposing the large-scale
knowledge matrix (Q-table) into multiple lower-dimensional
spaces. For all case studies in this article, since the search-
ing space of each continuous parameter is divided into 50
parts, the dimensions of each low dimensional Q table is set
to be 50 × 50.

In the pre-learning process, RL agents are initialized as
zeros and a random initialization is adopted to determine the
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(a)

(b)

Fig. 5. Convergence of the memory matrices and reward obtained by an
agent in two tasks.

Fig. 6. Convergence of the objective functions.

initial set of L-M agents. Fig. 5 shows the convergence curve
and the reward obtained by an agent during the pre-learning
process in two tasks. It is clear that each variable can converge
to its own optimal knowledge matrix after 700 iteration steps.
The optimal objective function during the learning process
among all agents is shown in Fig. 6. It is clear that ITQ can
converge to the optimal knowledge matrices for source task 1.
Similarly, when applying the pre-learning process to task 2,
a high quality fitness function can be obtained, as shown in
Fig. 6. Fig. 7 presents the comparison between the estimated
power outputs and measurements. It can be seen that the esti-
mated outputs are very close to measurements. These results
validate the highly convergence of the proposed ITQ method.

C. Transfer Learning and Comparison

With the pre-learning process completed, the optimal knowl-
edge matrices are exploited for the online load parameters
identification tasks using transfer learning. The online identi-
fication is implemented for task 3. As ITQ agents has learned
the optimal knowledge from task 1 and task 2, these tasks can
be viewed as source when dealing with task 3. Then, based on
the definition of similarity in (19), we can compute similari-
ties r13 = 0.63 and r23 = 0.71. Therefore, knowledge matrix
for task 3 can be initialized based on (19).

Fig. 8 compares the convergence of the objective function
for task 3 obtained by ITQ and other 4 algorithms, including

Fig. 7. Comparison between measurements and estimated outputs.

Fig. 8. Objective function obtained by five methods.

WOA, GWO, IPSO and L-M. Reward for these optimization
methods are defined as 1/h and h denotes the objective func-
tion. Note that all the algorithms adopt a random initialization
except the proposed ITQ which is able to transfer optimal
knowledge from source tasks. From Fig. 8, it is clear that
ITQ can perform deep exploitation from source tasks when
dealing with a new task and it can obtain the optimal solu-
tion within 150 iteration steps, which is much faster than that
of the pre-learning process. The comparison verifies that the
convergence rate can be dramatically accelerated by transfer
learning. Compared with other methods, ITQ converge the
faster and can obtain a better reward. In addition, ITQ can
obtain a higher quality reward contributed to the fact that
random search agents can avoid the premature convergence
and search the globe optimal result. In order to further test
the performance of ITQ, all the algorithms are executed with
100 runs. Fig. 9 shows the Box plots of objective functions
obtained by the 5 algorithms, and it is clear that ITQ per-
forms best and the convergence stability is higher than other
algorithms.

D. Impact of Low Similarity and Limited Source Tasks

This section validates the effectiveness of ITQ with low sim-
ilarity and limited source tasks. In real power systems, limited
source tasks can be an obstacle for transfer learning.
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TABLE III
PRE-SET PARAMETERS FOR DIFFERENT TASKS

Fig. 9. Comparison of Box plot of objective function.

Fig. 10. Reward comparison under low similarity condition.

Similarity analysis shows that r14 = 0.51 and r24 = 0.33,
and this indicates that there are few similarities between task 4
and another 2 source tasks. ITQ are adopted for task 4 to test
the performance of ITQ when dealing with a new task with
low similarity. Fig. 10 shows the comparison of optimization
results obtained by 5 methods. It indicates that each algorithm
can obtain a satisfied results and ITQ presents the biggest
reward which means ITQ still has high performance even when
the similarity between new task and source task is low.

Table IV presents identified results (average) from different
algorithms for load parameters in task 4. For each algorithm,
150 trials have been run to obtain the optimal load parame-
ters. For other methods, the initial set of parameters in the first
trial are randomly generated and will be used for initialization
in the remaining 149 trials. For ITQ, the initial knowledge
matrices are the same and calculated by (15) and 19 in each
trial. From the comparison results, it is clear that ITQ-based

TABLE IV
COMPARISON OF ESTIMATED PARAMETERS

load parameters are closest to actual values and this is consis-
tent with the results in Fig. 8. There are small discrepancies
between estimated parameters and true values, which may be
caused by the limited observability of some parameters.

E. Robustness of ITQ

Due to the complexity and nonlinearity of load models, it
has been found that different load parameter combinations may
lead to the same or similar dynamic response. For example,
given a set of measured data (U, P and Q), multiple com-
binations of load model parameters may result in a same
or similar reward using previous optimization methods. To
test the robustness of the proposed method in searching the
optimal parameters, 150 trials have been carried out for task
4 and the final reward and optimal parameters are recorded.
The reward under each trial is shown in Fig. 11 and it is
clear that the optimal rewards do not change much. But
for other heuristic methods, rewards have large variances in
150 trials. Based on the study in [7], the eight parameters
Rs, Rr, Xr, Kpm, ap, bp, aq, bq have the highest impact on load
dynamics and can be identified, while other five parameters
Xs, Xm, H, A, B do not affect load dynamics and cannot be
identified from voltage disturbance. Therefore, we focus on
the identification results of these eight parameters.
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Fig. 11. Optimal reward under 150 optimization trials.

Fig. 12. Identified parameters of IM under 150 optimization trials.

Fig. 13. Identified parameters of ZIP under 150 optimization trials.

Fig. 12 and Fig. 13 present the optimal results of these eight
parameters under 150 trials. The parameters shown in these
two figures are the optimal results (actions) obtained from
each optimization process. It can be seen that the results of
these eight parameters do not have large variances and are con-
sistent with the corresponding true values, which corroborate
the robustness of the proposed method.

In addition, as shown in Fig. 5, for a certain optimization
process, the reward of the proposed ITQ method converges
rapidly. In order to verify that identified parameters converge
with the same rate during the RL process, Fig. 14 shows the
curve of four parameters Rs, Rr, Xr, Kpm at each iteration step.
The result is based on the data obtained in task 4 and using
the proposed method. It is clear that these four parameters
converge after 300 steps, which is as fast as the convergence
speed of reward for task 4 shown in Fig. 10. In order to
test the parameters convergence rate under each method, the

Fig. 14. Parameters converge rate.

Fig. 15. Comparison of parameters converge rate.

following two figures are provided to show the comparison.
Fig. 15 shows the curve of estimations for four parameters by 5
methods at each iteration step. These methods include: WOA,
GWO, ITQ, IPSO and L-M. The result is based on the data
obtained in task 4 which can be viewed as a new task. Fig. 16
shows statistics of the minimum step for convergence and the
converge criteria requires the relative error to be smaller than
1.5% in 50 consecutive steps. The relative error in nth step σ n

is defined as:

σ n =
∣∣∣Xn+1 − Xn

∣∣∣/Xn (20)

where Xn is the estimation is nth step.
From the comparisons we can see that our proposed method

achieves a higher accuracy and the parameters estimated
by ITQ can converge in fewer steps, which validates the
effectiveness of the proposed load identification technique.

F. Computational Efficiency

In order to fully evaluate the efficiency of the proposed
method, Table. V compares the computation time of
optimization process of each method for task 2 and task 3,
which belong to a source task and a new task, respectively.
All the algorithms are implemented in MATLAB R2019a by
a personal computer with Intel(R) i5 CPU at 2.6GHz with
8GB of RAM. Besides, in task 3, the proposed ITQ is able to
transfer optimal knowledge from source tasks.
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Fig. 16. Minimum iteration step to converge.

TABLE V
COMPARISON OF ESTIMATED PARAMETERS

Note that the computational time required in the
optimization of composite load modeling also depends on the
number of sampled data. In this study, there are 130 samples
in each task. Besides, to offer a fair comparison, the same
convergence criteria is used during optimization process. The
criteria is for the objective function to reach a value below
1.8e-3.

From Table. V and Fig. 8, we can see that the it takes some
time for ITQ agents to solve source task (pre-learning pro-
cess) by greedy search and guided by teachers (L-M agents).
When dealing with a new task, ITQ enables more accurate
and efficient parameter identification. In power systems, power
companies recorded most measurements during faults and ITQ
can complete the pre-learning process by off-line learning
based on these previous recorded measurements and identify
load parameters in a short time when dealing with a new task.

VI. CONCLUSION AND FUTURE WORK

This article proposes an Imitation and transfer Q-learning
based-based composite load parameter identification approach
to accelerate the identification rate and improve the iden-
tification accuracy. An imitation learning process is intro-
duced to improve the exploitation and exploration process of
Q-learning. A transfer learning process is employed to improve
the load parameter identification efficiency. Owing to the bal-
ance between greedy search and random global search rule,
the proposed ITQ can avoid the premature convergence and

search the global optimal result. Simulations on a 68-bus test
system have validated the effectiveness of the proposed ITQ
method, and the comparisons show that ITQ approach has
superior convergence properties owing to the ability to exploit
optimal knowledge from source tasks.

Considering the development of complex load models and
time-varying load parameters, in the future work, we will
extend this approach and explore up-to-date methods to iden-
tify the Western Electricity Coordinating Council (WECC)
composite load model and time-varying load parameters.
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