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a b s t r a c t

In this paper, a hybrid adaptive control method is proposed for a class of discrete-time multiple-inputs-
multiple-outputs (MIMO) systems with non-Lipschitz nonlinearities by introducing a novel Riemann
sum operator with variable step size. Firstly, for the first order approximation of the original nonlinear
system, a linear adaptive controller is developed to assure essential boundedness of all the signals
but with unsatisfactory performance. Secondly, an artificial neural network (ANN)-based nonlinear
adaptive controller is designed for the original system to improve response performance, nevertheless,
may lead to instability. Thirdly, switching mechanism between the linear adaptive controller and the
nonlinear one is suitably designed to achieve stability and improved output tracking performance
simultaneously. Finally, a numerical example is provided to verify the effectiveness of the proposed
method.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The past over half a century has witnessed the development
f adaptive control [1–4]. Different criteria bring different cate-
ories of adaptive control. Although under each of the categories
here are many research articles and a few specialized mono-
raphs addressing the fundamentals and advanced developments
f adaptive control, as pointed out by Tao [3], multivariable adap-
ive control of multiple-inputs-multiple-outputs (MIMO) nonlin-
ar systems is one of open areas in adaptive control, which is the
ocus of this paper.

To the considered multivariable adaptive control of MIMO
onlinear systems, the most relevant results are work by [5] and
ur previous results [6,7]. In [5], the authors for the first time
stablished adaptive control of a class of nonlinear discrete time
ynamical systems with boundedness of all signals by using a
inear robust adaptive controller and a neural networks based
onlinear adaptive controller, and switching between them by
suitably defined switching law. However, [5] assumed global
oundedness of nonlinearities and thus restricts the applicabil-
ty range of the considered systems. [6,7] extended the result
f [5] by relaxing the assumption of global boundedness on the
igher-order nonlinearities to allow the nonlinearities to be Lips-
hitz and linear growth, respectively. However, the satisfaction
f such assumptions are usually difficult to justify in practical
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engineering. Moreover, non-Lipschitz nonlinearities widely exist
in real-world systems that are intuitively those nonlinearities
whose first derivative does not exist. In real world, there are
some practically important systems contain non-Lipschitz non-
linearities which cannot be handled with the tools developed for
the systems with Lipschitz nonlinearities. For example, impulsive
disturbances in wireless networked control systems [8] and in
the reverberant system of the Virginia Tech plate testbed [9],
the fluctuations of current in the deterministic electric network
in [10], and the nonlinear force in the spin systems of anharmonic
oscillators in [11]. Although some simple non-Lipschitz functions
can be approximated by some known functions, like the Heav-
iside distribution can be approximated by the logistic function,
we herein attempt to directly deal with the non-Lipschitz non-
linearities satisfying certain conditions. In these cases, the above
controller will result in instability. To extend these methods to
handle the non-Lipschitz nonlinearities, new operator or system
transformation with novel controllers need to be designed as well
as the stability and performance assessment theorem. To our best
knowledge, there have not been results providing solution to the
above challenges, thus this article aims to achieve both stability
and improved performance of multivariable adaptive control of
MIMO nonlinear systems with non-Lipschitz nonlinearities.

Considering only the capability of ensuring stability and per-
formance, some classical robust control schemes such as sliding
mode control, robust Lyapunov control and mixed flatness and
model-free control may work as well. Sliding mode control is a
variable structure control method, which changes the dynamics

of a nonlinear system by application of a discontinuous control
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ignal that forces the system to ‘‘slide’’ along a manifold (i.e., the
liding surface), that remarkably rejects certain disturbance and
arameter variations. For example, [12] proposed a novel sliding
ode control method for stochastic systems under the event-

riggering mechanism to achieve both stabilization and better
erformance. Robust Lyapunov control is to design a control input
uch that an uncertain nonlinear system is of Lyapunov stabil-
ty. However, the conventional sliding mode control and robust
yapunov control are model-based although they have relatively
ow requirement of model precision. Mixed flatness based and
odel free control is an ingenious combination of flatness-based
ontrol and model free control to cope with control of uncertain
onlinear systems, where partially known part of the system
appens to be flat and the unknown part describing unknown
ounded dynamics can be compensated for or estimated online
y model free control such as intelligent proportion integra-
ion differentiation (PID) method in [13]. The mixed flatness and
odel-free control does not require detailed model, nevertheless,

t can be viewed as another way of predictive control but with-
ut optimizing certain performance. Recently, as the prevalence
f data-driven and machine learning, learning-based model-free
ontrol approaches have been widely studied. In [14], a data-
riven control method for single-input-single-output (SISO) sys-
ems with unknown control gain was proposed based on the
dea in [13]. Its main idea is to recursively learn the input–
utput mapping at each state relying on a feedback linearizability
ssumption. Recently, a singularity-free fixed-time fuzzy control
or robotic systems with the position tracking error constraint is
roposed in [15]. In [16], the event-driven model-free control was
pplied to two nonlinear MIMO motion models, and the control
erformance such as tracking error, algorithm complexity and ro-
ustness are compared with sliding mode, backstepping and PID
ontrol. In conclusion, classical robust control approaches ensure
he performance only in a qualitative manner [12,13], whereas
he methods proposed by [14,16] and this paper can quantify the
tability results and tracking performance, respectively.
To achieve model-free adaptive control for MIMO systems

ith optimal tracking performance as well as handling non-
ipschitz nonlinearities, in this paper, we propose a hybrid adap-
ive control strategy by introducing a new Riemann sum operator
ith variable step size. Firstly, a linear adaptive controller is
eveloped for its linearized estimate model to guarantee essential
oundedness of all the signals with probably unsatisfactory per-
ormance. The essential boundedness is defined as the signals are
ounded almost everywhere except for the finite points that un-

bounded perturbation occurs. Compared to the conventional BIBO
stability, essential boundedness is more practical for real-world
engineering. Then, a data-driven nonlinear adaptive controller
based on ANN is designed to improve the performance which
is measured by the tracking error between system output and
reference trajectory. But it is possible to lead to instability. Finally,
a switching mechanism between the two controllers is prop-
erly designed to achieve both essential stability and improved
tracking performance simultaneously.

Compared to the relevant existing results in the literature, the
main features of this paper can be concluded in twofolds: (1) A
novel Riemann sum operator with variable step size is introduced
for the first time to multiple models adaptive control of MIMO
nonlinear systems to deal with the non-Lipschitz nonlinearity;
(2) The proposed method can cope with non-Lipschitz nonlin-
arities in an essential manner that relaxes the conditions on
igh-order nonlinearities in [5–7], which require them to be
ither globally bounded, Lipschitz or linear growth.
The rest of the paper is organized as follows. Nonlinear mul-

ivariable control for known systems is introduced in Section 2.

hybrid adaptive control method for nonlinear systems with d

2

non-Lipschitz nonlinearities to simultaneously achieve stability
and improved performance is proposed in Section 3. Stability and
tracking errors are analyzed in Section 4. A numerical example is
conducted in Section 5 to verify the effectiveness of the proposed
method. Finally, Section 6 concludes this paper with some brief
remarks and an outlook on future work.

2. Nonlinear multivariable control for known systems

Consider the following m-input-m-output discrete-time non-
inear system:

x(k + 1) = F (x(k), u(k)),
y(k) = C(x(k)), (1)

here u(k) ∈ Rm, y(k) ∈ Rm, x(k) ∈ Rn, and F and C are vector-
alued nonlinear functions such that the origin is an equilibrium
tate.
System (1) can be linearized in the neighborhood of the origin

ith Taylor series expansion. Then, according to [5,6], for an ob-
ervable system of order n, x(k) can be expressed as the function
f y(k), . . . , y(k−n+1), u(k), . . . , u(k−n+1), so that the nonlinear
ystem (1), can also be simply represented as

A(z−1)y(k + d) = B(z−1)u(k) + f [y(k + d − 1, . . . ,
y(k + d − n), u(k), . . . , u(k − n + 1))], (2)

here A(z−1) and B(z−1) are two m × m matrix polynomials in
he backward shift operator z−1 with the orders n and n − 1,
espectively; d is the relative degree; f [·] ∈ Rm is a vector-valued
igher-order nonlinear function [1]. Similar to [6], we need the
ollowing assumptions:

ssumption 1. The system order n and the relative degree d are
nown a priori.

ssumption 2. The linear parameter matrices forming A(z−1),
(z−1) lie in a compact region σ , and B(0) is nonsingular.

ssumption 3. The system has globally uniformly asymptotically
table zero dynamics.

emark 1. The system order and the relative degree of system
2) can be unknown and determined by the method in [17].

emark 2. As pointed out in [5], Assumption 3 ensures that an
nput sequence will never grow faster than the output sequence.
his assumption is a necessary condition for proving the stability
f the standard adaptive control problem.

The objective of this paper is to seek a control strategy to
chieve both system stability and improved performance, i.e., all
he input and output signals of the closed-loop system are guar-
nteed to be essentially bounded, and simultaneously the system
utputs optimally track the reference signals.
Introduce the following performance index [18]:

c = ∥T (z−1)y(k + d) − Rω(k)∥2, (3)

here ω(k) ∈ Rm is a known bounded reference input vector,
(z−1) is a stable m × m diagonal matrix weighing polynomial,
nd R is an m × m diagonal matrix.
The optimal control law that minimizes (3) subject to the

onstraint (2) is

(z−1)u(k) + G(z−1)y(k) + υ[·] = Rω(k), (4)

here H(z−1) = L(z−1)B(z−1) := H0+H1z−1
+· · ·+Hn+d−2z−n−d+2,

n which L(z−1) is an n × n matrix polynomial with the order
−1 −1 −n+1
− 1, G(z ) := G0 + G1z + · · · + Gn−1z is an n× n matrix
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olynomial with the order n − 1. They are uniquely determined
y the equation as follows [6]:

(z−1) = L(z−1)A(z−1) + z−dG(z−1), (5)

and υ[·] = L(z−1)s[·].
When the control law (4) is used, υ is replaced by its estima-

ion υ̂[·]. Due to the uncertainty and unmodeled characteristics
of υ , a universal approximator is required for this estimation.
As proved in [19], ANN is an appropriate and easy-to-implement
universal approximator, thus is utilized in this paper. Then the
equation of the closed-loop system is

T (z−1)y(k + d) = Rω(k) + υ[·] − υ̂[·], (6)

If the linear parts of the system are known a priori, by uti-
izing (6), and choosing the diagonal matrix T (z−1) such that the
eterminant of T (z−1) characterizes the poles of the closed-loop
ystem, the tracking error of the closed-loop system is υ[·]− υ̂[·]

ith R = T (1). In addition, the random search algorithm in [20] is
used to calibrate the hyper-parameters based on the performance
on a validation set. With well-tuned hyper-parameters and ap-
propriate training algorithm, the estimation of ideal parameter
matrix, Ŵ (k) containing weights and biases can be obtained.
Then, by taking Ŵ (k) and Ψ (k) as the input vectors of the
NN function, the error between the estimation of unmodeled
ynamics and its real value ∥υ[·] − υ̂[·]∥ can be ensured less

than any specified positive number over a compact set, so that
the tracking error can be as small as possible [21].

If the nonlinearity υ[·] is small, the control law (4) can be
approximated by the linear control law below:

H(z−1)u(k) + G(z−1)y(k) = Rω(k). (7)

To achieve both stability and the improved performance it is
required to design a switching strategy, which is what the next
section will describe.

3. Hybrid adaptive control

In this section, we first introduce a Riemann sum opera-
tor with variable step size to characterize the non-Lipschitz
nonlinearities. Then linear and nonlinear estimate models are
constructed for designing linear and nonlinear controllers, re-
spectively. Finally, a switching mechanism is proposed to coor-
dinate the two controllers to ensure both the stability and the
better performance.

If the linearization parameters of the system are unknown or
slowly time-varying, we use the direct adaptive control scheme.
From (2) and (5), we obtain the following model:

T (z−1)y(k + d) = G(z−1)y(k) + H(z−1)u(k) + υ[X̄(k)], (8)
φ(k + d) = θ TX(k) + υ[X̄(k)], (9)

where φ(k + d) = T (z−1)y(k + d), θ = [G0, . . . ,Gn−1,H0, . . . ,
Hn+d−2]

T , X(k) = [y(k)T , . . . , y(k−n+1)T , u(k)T , . . . , u(k−n−d+

2)T ]T , and X̄(k) = [y(k), . . . , y(k−n+1), u(k), . . . , u(k−n−d+2)].

Remark 3. From Assumption 2, the parameter matrix θ lies in a
certain compact region σ .

Define a Riemann sum operator p with variable step size as

pα(k) =

k∑
i=0

α(i)∆i, (10)

here α represents φ, X , or υ[X̄], and ∆i = 1/max{φ(i +

), X(i), υ[X̄(i)]} is variant for each time-step. Applying the sum-
ation operation p to φ, X , or υ[X̄] in (9), respectively, we have

(k + d) = θ Tψ(k) + pυ[X̄(k)], (11)

here Y (k + d) = pφ(k + d), and ψ(k) = pX(k).
3

By taking advantage of (10), it can be obtained that the higher-
rder nonlinear term υ[·] can be a non-Lipschitz nonlinearity,

meanwhile its summation is always bounded by some positive
constant M , i.e.

∥pυ[·]∥ ⩽ M. (12)

Remark 4. The introduction of sum operator p relaxes the condi-
tion in [5–7], which confine the nonlinearity either to be globally
bounded or Lipschitz. With the proposed sum operator, when
an unbounded perturbation υ[X(i)] occurs at time i, to name
mpulse function as an example, ∆i will be zero, thus filtering the
unbounded perturbation in the summation system automatically.
Then, the controller will be designed based on the summation
system instead of the original one, which will be elaborated in
the next section. In this way, although it cannot compensate
the unbounded perturbations, the essential boundedness will be
achieved, i.e., all the signals are bounded almost everywhere
except for the finite points that perturbation is unbounded.

It is worth noting that, essential boundedness is more practi-
cal in real-world engineering. Fully compensating an unbounded
perturbation intrinsically requires an unbounded control signal
which is unrealizable for any actuator and unnecessary in prac-
tice. It is more important for a controller to make systems survive
the unbounded perturbation while guaranteeing the performance
afterwards. For instance, in microgrid control, the center con-
troller uses field measurement as output feedback which is usu-
ally obtained by micro phasor measurement unit (PMU) and
transferred through wireless [22]. When observing the real data,
one can always find the feedback containing many non-Lipschitz
and very large perturbations. These perturbations are not desired
to be compensated but to be eliminated. From this viewpoint, our
proposed sum operation with variable step size can be considered
as a special class of filter.

The proposed operator can be considered as a class of sum-
mation filter that guarantees bounded input and bounded output
(BIBO) stability. It is different from the filter usually employed in
parameter identification algorithms such as that in [2] from the
structure design and stability property.

In this paper, two estimate models of (9) are constructed. The
first one is a linear estimate model, which is defined as

Ŷ1(k + d) = θ̂1(k)Tψ(k), (13)

where θ̂1(k) is an estimate of θ at time instant k, and is updated
by

θ̂1(k) = proj{θ̂ ′

1(k)}, (14)

θ̂ ′

1(k) = θ̂1(k − d) +
a1(k)ψ(k − d)e1(k)T

1 + ψ(k − d)Tψ(k − d)
, (15)

1(k) =

{
1 if ∥e1(k)∥ > 2M,
0 otherwise,

(16)

here e1(k) is the linear model error, i.e.,

1(k) = Y1(k) − θ̂1(k − d)Tψ(k − d), (17)

ˆ ′

1(k) = [Ĝ1,0(k), . . . , Ĝ1,n−1(k), Ĥ ′

1,0(k), . . . , Ĥ1,n+d−2(k)]T , and
roj{·} is a projection operator satisfying

roj{θ̂ ′

1(k)} =

{
θ̂ ′

1(k) if ∥Ĥ1,0(k)∥ ⩾ hmin,

[. . . , hmin, . . .]
T otherwise,

(18)

here hmin is defined by prior knowledge satisfying hmin > 0. The
urpose is to refrain the control signal from being too big due to
he too small identification parameter Ĥ (k).
1,0
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The second estimate model is a nonlinear one defined as

Ŷ2(k + d) = θ̂2(k)Tψ(k) + pυ̂∗
[X̄(k)], (19)

here θ̂2(k) is another estimate of θ at time instant k, and
υ̂∗

[X̄(k)] is a neural networks estimation of pυ∗
[X̄(k)] at time

nstant k with υ∗
[X̄(k)] = Y (k + d) − θ̂2(k)Tψ(k), i.e.,

υ̂∗
[X̄(k)] = NN[Ŵ (k), ψ(k)], (20)

here NN[·] represents the structure of the adopted neural net-
orks, ψ(k) is the input vector, and Ŵ (k) is the estimate of the

deal weight matrix W ∗.
Similar to [5], there is no restriction on how the parameters

ˆ2(k) and Ŵ (k) are updated except that they always lie inside
ome predefined compact region Ω , i.e.,

ˆ2(k), Ŵ (k) ∈ Ω ∀k. (21)

he nonlinear model error is

2(k) = Y2(k) − θ̂2(k − d)Tψ(k − d) − pυ̂∗
[X̄(k − d)]. (22)

y the linear estimate model (13), we have the linear adaptive
ontroller C1 for summation system:

ˆ1(k)Tψ(k) = pRω(k). (23)

rom the nonlinear estimate model (19), we obtain the neural-
etworks-based nonlinear adaptive controller C2 for summation
ystem:

ˆ2(k)Tψ(k) + pυ̂∗
[X̄(k)] = pRω(k). (24)

o compute the controller for original system, we conduct the
ollowing transformation:

(k) = S × (ψ(k) − ψ(k − 1))/sat(∆k). (25)

where

=
[
01×n−1 1 01×n+d−2,

]
at(∆k) =

{
∆k if ∥∆k∥ > ∆min,

∆min otherwise.

The saturation function is designed to prohibit u(k) tending
o zero when unbounded perturbation occurs. Consequently, the
nbounded perturbation is not fully compensated at time k. How-
ver, when the perturbation returns to the normal operational
ange, the controller (25) is still capable of coping with it instead
f diverging afterwards.
In the following, hybrid adaptive control between the linear

daptive controller C1 and the neural networks nonlinear adap-
ive controller C2 is given. The structure of the hybrid system is
llustrated in Fig. 1, where j = 1 and 2. j = 1 denotes linear,
nd j = 2 denotes nonlinear. A similar switching rule as in [5] is
roposed below

Jj(k) =

k∑
l=d

aj(l)(∥ej(l)∥2
− 4M2)

2(1 + ψ(l − d)Tψ(l − d))
+

c
∑k

l=k−N+1(1 − aj(l))∥ej(l)∥2,

(26)

aj(k) =

{
1 if ∥ej(k)∥ > 2M,
0 otherwise,

(27)

where N is an integer and c ⩾ 0 is a predefined constant.
By comparing J1(k) and J2(k), the adaptive controller C∗ cor-

responding to the smaller J∗(k) is chosen to control the system.
Note that the performance index (26) is composed of two parts.
The first part,

∑k
l=d aj(l)(∥ej(l)∥

2
− 4M2)/2(1 + ψ(l − d)Tψ(l −

)), is used to distinguish between signals with different growth
4

Fig. 1. The block diagram of the hybrid adaptive controller.

rates, so that boundedness of all the signals can be established.
The second part, c

∑k
l=k−N+1(1 − aj(l))∥ej(l)∥2, is a measure of

he prediction error over a finite window and is included to
mprove performance. When the neural networks are degraded
r disturbed, the e2 increases, consequently, J1 is less than J2 and
he controller C1 is chosen. C1 keeps working to guarantee the sta-
ility until the neural networks based controller recovers. Then e2
ecreases, accordingly, J1 is greater than J2 and the controller C2 is
hosen to improve performance. The parameters c and M in (26)
an influence the tracking performance. Parameter c denotes the
eight of tracking performance, which is usually selected around
.5 to balance the stability and control performance [6]. As M
ecreases, the accuracy of linear parts will increase. However,
too small M will lead to sluggish convergence of parameter
pdating process.

emark 5. According to the theory of switched systems [23],
t is possible to give bad control performance or even lead to
nstability by frequent switching stabilizing controllers or stable
ubsystems, and also it is possible to obtain better performance or
uaranteed stability by frequent switching controllers or unstable
ubsystems. That is, a switching law can determine whether an
verall switched system is stable or how the control perfor-
ance will be after switching among controllers or subsystems.
herefore, constructing an appropriate switching law plays an
ssentially important role in how control performance of the
witched system is. The switching law proposed in this paper
ives better performance, i.e., the proposed hybrid adaptive con-
rol based on the multiple models theory guarantees both (BIBO)
tability and improved performance of the system.

The hybrid adaptive control algorithm proposed in this pa-
er is composed of the identification algorithm for controller
arameters, the linear adaptive controller, the neural networks
onlinear adaptive controller, and the switching mechanism. It
an be summarized as follows:
tep 1: Measure y(k) and construct datum vector ψ(k − d);
tep 2: Calculate the model errors e1(k) and e2(k) by (17) and (22),
nd calculate J1(k) and J2(k) by (26) and (27);
tep 3: Compare J1(k) and J2(k), and choose the controller C∗, (23)
r (24), corresponding to the smaller J∗(k);
tep 4: Estimate the controller parameter θ̂∗(k) using (14)–(18)
r (20)–(22), and calculate the current control input u(t) from the
ontroller C∗ to be applied to system (2);
tep 5: Let k = k + 1, and return to Step 1.

. Analysis of stability and tracking errors

In this section, the theoretical results on stability and tracking
rrors are first stated, and then the rigorous proof is provided.
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heorem 1. For system (2), the hybrid adaptive control algorithm
13)–(27) ensures that the input and output signals of the closed-
loop system are essentially bounded, i.e., bounded almost everywhere
except for the finite points that υ[·] is unbounded.

In addition, by properly choosing the structure and hyper-
parameters of the ANN, for a predefined arbitrarily small positive
number ε, the tracking error of the closed-loop system satisfies

lim
k→∞

∥ē′(k)∥ = lim
k→∞

∥T (z−1)y(k) − Rω(k − d)∥ < ε.

almost everywhere except for the points that υ[·] is unbounded.

roof. First, define θ̃1(k) = θ̂1(k) − θ , and then by (15), we have

θ̃1(k) = θ̃1(k − d) +
a1(k)ψ(k − d)e1(k)T

1 + ψ(k − d)Tψ(k − d)
.

Bearing the similarity in [5], it follows that

∥θ̃1(k)∥2 ⩽ ∥θ̃1(k − d)∥2
−

a1(k)(∥e1(k)∥2
− 4M2)

2(1 + ψ(k − d)Tψ(k − d))
. (28)

ince a1(k) = 1 for ∥e1(k)∥ > 2M , and is 0 otherwise, {∥θ̃1(dk)∥2
}

s d nonincreasing sequences. Hence, θ̂1(k) is bounded. Moreover,

lim
N→∞

N∑
k=d

a1(k)(∥e1(k)∥2
− 4M2)

2(1 + ψ(k − d)Tψ(k − d))
< ∞, (29)

lim
k→∞

a1(k)(∥e1(k)∥2
− 4M2)

2(1 + ψ(k − d)Tψ(k − d))
→ 0. (30)

From (17) and (23), we have

e1(k) = Y (k) − θ̂1(k − d)Tψ(k − d)
= pT (z−1)y(k) − pRω(k − d). (31)

Note that e1(k) is a summation, which consists of a series of
identification errors at each instant, i.e., e1(k) = pe′

1(k), where
e′

1(k) = T (z−1)y(k) − Rω(k − d).
By (31) and the stability of T (z−1), along with Assumption 3,

there exist positive constants c1, c2, c3, and c4 such that

|yi(k)| ⩽ c1 + c2 max
0⩽τ⩽k;1⩽i⩽n

|e′

1i(τ )| i = 1, 2, . . . , n,

nd

ui(k − d)| ⩽ c3 + c4 max
0⩽τ⩽k;1⩽i⩽n

|yi(τ )| i = 1, 2, . . . , n.

ince

(k − d) = [y(k − d)T , . . . , y(k − n − d + 1)T ,

u(k − d)T , . . . , u(k − n − 2d + 1)T ]
T
,

t follows that there exist positive constants c5, c6, c7 and c8 such
hat

X(k − d)∥ ⩽ c5 + c6 max
0⩽τ⩽k

∥e′

1(τ )∥. (32)

ψ(k − d)∥ ⩽ c7 + c8 max
0⩽τ⩽k

∥e1(τ )∥. (33)

rom (32), the boundedness of the input and output signals are
etermined by the boundedness of e′

1(k). To prove the bounded-
ess of e′

1(k), we can prove the essential boundedness of e1(k)
nstead.

Now assume that e1(t) is unbounded. Then by (16), for a suffi-
iently large positive constant L, when k > L, we have ∥e1(k)∥ >
M and a1(k) = 1. This indicates that the numerator in (30) is a
ositive real scalar sequence, and thus there exists a monotony
ncreasing sequence ∥e (k )∥, such that lim ∥e (k )∥ = ∞.
1 n kn→∞ 1 n

5

owever, we can derive that

lim
kn→∞

a1(kn)(∥e1(kn)∥2
− 4M2)

2(1 + ψ(kn − d)Tψ(kn − d))

= lim
kn→∞

a1(kn)(∥e1(kn)∥2
− 4M2)

2(1 + ∥ψ(kn − d)∥2)

⩾ lim
kn→∞

a1(kn)(∥e1(kn)∥2
− 4M2)

2(1 + (c7 + c8 max0⩽τ⩽k ∥e1(τ )∥)2)

⩾ lim
kn→∞

a1(kn)(∥e1(kn)∥2
− 4M2)

2(1 + (c7 + c8∥e1(kn)∥)2)

⩾
1

2C2
8

> 0,

which contradicts (30), and hence the assumption that e1(k)
is unbounded is false, i.e., ψ(k − d) is bounded. Thus, by the
definition (10), the input u(k − d) is bounded and output y(k)
is bounded almost everywhere except for the points that υ is
unbounded. Consequently, X(k − d) is essentially bounded when
the linear adaptive controller is used alone.

Second, by (22) and (24), we have

e2(k) = Y (k) − θ̂2(k − d)Tψ(k − d) − pυ̂∗
[X̄(k − d)]

= pT (z−1)y(k) − pRω(k − d).
(34)

By (34) and the stability of T (z−1), along with Assumption 3, there
exist positive constants d1, d2, d3, and d4 such that

|yi(k)| ⩽ d1 + d2 max
0⩽τ⩽k;1⩽i⩽n

|e2′

i(τ )| i = 1, 2, . . . , n,

|ui(k − d)| ⩽ d3 + d4 max
0⩽τ⩽k;1≤i⩽n

|yi(τ )| i = 1, 2, . . . , n.

herefore, similarly, there exist positive constants d5, d6, d7 and
8 such that

∥X(k − d)∥ ⩽ d5 + d6 max
0⩽τ⩽k

∥e′

2(τ )∥. (35)

ψ(k − d)∥ ⩽ d7 + d8 max
0⩽τ⩽k

∥e2(τ )∥. (36)

y (27), the second term in (26) is always bounded, so J1(k) is
ounded by employing (29). For J2(k), there are two possibilities:
Case 1: J2(k) is bounded.
By the switching rule (26), it follows that

lim
→∞

a2(k)(∥e2(k)∥2
− 4M2)

2(1 + ψ(k − d)Tψ(k − d))
→ 0.

herefore, the model error of the closed-loop system, e(k) =

1(k) or e2(k), satisfies

lim
k→∞

a(k)(∥e(k)∥2
− 4M2)

2(1 + ψ(k − d)Tψ(k − d))
→ 0, (37)

here

(k) =

{
1 if ∥e(k)∥ > 2M,
0 otherwise.

(38)

Case 2: J2(k) is unbounded.
Since J1(k) is bounded, there exists a constant k0 such that

1(k) ⩽ J2(k), ∀k ⩾ k0. Therefore, when k ⩾ k0+1, by the switching
echanism, the model e(k) = e1(k), and also satisfies (37).
From (33), (36) and (37), using the same reasoning as above, it

ollows that ψ(k − d) is bounded, and thus the input and output
ignals of the closed-loop hybrid system are essentially bounded.
Finally, from (37) and the boundedness of ψ(k−d), the model

rror ej(k), j = 1, 2, satisfies

lim ∥ej(k)∥ ⩽ 2M. (39)

k→∞
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hen by the switching rule (26) and (27), when k → ∞, the
ystem chooses the controller corresponding to the smaller model
rror as the control input of the switching system. So from (31)
nd (34), the tracking error of the summation system, ē(k) =

(k) − pRω(k − d), is equivalent to the smaller model error.
We now will prove that when k → ∞, the tracking error is

quivalent to the nonlinear model error, i.e., the nonlinear model
rror can always be less than the linear model error. For the
onlinear model error, from (22), we have

e2(k) = Y2(k) − θ̂2(k − d)Tψ(k − d) − pυ̂∗
[X̄(k − d)]

= Y2(k) − (Y2(k) − pυ∗
[X̄(k − d)]) − pυ̂∗

[X̄(k − d)]

= pυ∗
[X̄(k − d)] − pυ̂∗

[X̄(k − d)].

(40)

hen the structure and parameters of a neural network are
hosen properly, for a predefined arbitrary small positive num-
er ε(< limk→∞ ∥e1(k)∥), the tracking error ∥pυ∗

[X̄(k − d)] −

υ̂∗
[X̄(k − d)]∥ < ε can be achieved. Thus, when k → ∞, the

onlinear model error can be less than the linear model error,
onsequently, the tracking error of the system will be e2(k), which
atisfies

lim
k→∞

∥ē(k)∥ = lim
k→∞

∥e2(k)∥ < ε. (41)

t is obvious that for the points that υ[·] is bounded, the above
onclusion also holds for tracking error ē′(k), i.e.,

lim
k→∞

∥ē′(k)∥ = lim
k→∞

∥T (z−1)y(k) − Rω(k − d)∥ < ε. □

5. Simulation studies

In this section, a numerical nonlinear system is presented to
illustrate the effectiveness of the proposed method by comparing
with the one in [5].

Consider the following double-input-double-output discrete-
time nonlinear dynamical system in the form of system (2):

y1(k + 1) = 0.6y1(k) + 1.2y2(k) + 1.5y1(k − 1)
+ 0.3y2(k − 1) + 1.1u1(k) + 0.8u2(k)

+ 0.54u1(k − 1) +

√
|u1(k) − 1|

+
u1(k) + u2(k − 1) + y1(k) + y2(k − 1)

1 + u1(k)2 + u2(k − 1)2 + y1(k)2 + y2(k − 1)2

y2(k + 1) = 2.4y1(k) + 0.1y2(k) − 0.2y1(k − 1)
+ 1.8y2(k − 1) + 1.25u2(k) + 0.32u1(k − 1)

+ 0.1u2(k − 1) +

√
|u2(k) − 1|

+
u1(k) + u2(k − 1) + y1(k) + y2(k − 1)

1 + u2(k)2 + u1(k − 1)2 + y2(k)2 + y1(k − 1)2
.

The origin is an equilibrium point, the relative degree d = 1
and the system order n = 2. The sampling time interval∆T = 1 s.
It can be observed that, unlike [6], the higher-order nonlinearities
in the above nonlinear system are not Lipschitz continuous. Ref-
erence trajectories, similar to [6], w1 = 1.5(sin 2t/10+sin 2t/25)
and w2 = w1 are chosen to be followed. The weighting matrix
polynomial

T (z−1) =

[
1 − 0.1z−1 0

0 1 − 0.1z−1

]
ensures the assigned poles are both 0.1, and the weighting matrix

R =

[
0.9 0
0 0.9

]
is chosen.

A back-propagation neural network with single hidden layer
and adaptive learning rate in batch mode is chosen. In order
6

Fig. 2. The tracking performance of output y1 using the proposed method.

Fig. 3. The tracking performance of output y2 using the proposed method.

Fig. 4. The switching sequence of the proposed method.

to determine the optimal number of hidden nodes, a cross-
validation procedure is used, which starts by moving bottom-
up [24]. As a result, when the number of the hidden nodes is
larger than 6, the cross-validation error cannot be reduced. So,
the number 6 is chosen as the optimal number of hidden nodes.
The parameters in (27) are chosen to be c = 1.5 and N = 2. The
earning rate is 0.1.

When the hybrid adaptive control algorithm proposed in this
aper is implemented, Figs. 2–3 and Fig. 4 show the tracking
erformance and the corresponding switching signals, respec-
ively. The root mean square errors (RMSEs) equal for [y1, y2]
s [0.7966, 1.1912]. Note that the real outputs did not track the
eferences well in the first 10 time steps. These overshoots can
e attributed to the nature of adaptive control, because it needs
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Fig. 5. The tracking performance of output y1 using the contrastive method.

Fig. 6. The tracking performance of output y2 using the contrastive method.

some time to update the parameters. After that good tracking per-
formance of the output signals is achieved. The switching signal
illustrates that even though the neural network nonlinear con-
troller works very well most of the time, it degrades occasionally,
and then the linear controller has to take over until the neural
network controller works again. However, if the neural network
controller cannot recover, the linear controller will work all the
time. Different sets of parameters of c , N and the leaning rate
of the neural network are also simulated, with varying tracking
performances, but signals in the system are always bounded.

To further verify the effectiveness of the proposed method
for non-Lipschitz nonlinearity, the method in [5] is implemented
on the same simulation conditions. The tracking performance is
shown in Figs. 5–6 with RMSEs equal to [48.9881, 47.5963] for
y1 and y2, respectively. The inaccuracy indicate that the original
control algorithm in [5] cannot stabilize the system with non-
Lipschitz nonlinearities. As shown in Fig. 7, the neural network
controller is chosen almost all the time. This is due to the strong
nonlinearities in this case.

The simulation studies for this numerical example illustrate
that the proposed hybrid adaptive control method can achieve
both stability and improved performance simultaneously.

6. Conclusion

Based on the framework established in [5,6], a hybrid adaptive
control method is proposed for a class of MIMO discrete-time
nonlinear dynamic systems with non-Lipschitz nonlinearities. The
non-Lipschitz nonlinearities were compensated by introducing
a new sum operator, which is a distinguishing feature com-
pared to existing methods in the literature. It is shown that
properly switching between the linear controller and the non-
linear one achieves both bounded input and output signals of
7

Fig. 7. The switching sequence of the contrastive method.

the closed-loop hybrid switching system and improved tracking
performance subject to mild assumptions.

Extension on the proposed method may lie in the following
aspects. The current method requires minimum-phase assump-
tion on the considered systems, but many practical systems are
essentially non-minimum-phase [25], which is also a difficult
problem in nonlinear control [26]. Therefore, it is meaningful but
not straightforward task to extend this method to non-minimum-
phase case, which is our ongoing work. The method herein uses
the neural networks to approximate the higher-order nonlin-
earities, where the learning problem is a heuristic optimization
problem. Thus the global optimality cannot be guaranteed [27].
It is suggested to first apply new non-heuristic approximation
methods [27] to optimally approximate the higher-order non-
linearities and then adopt the deterministic global optimization
techniques [27,28] to solve the optimization problems to global
optimality. The future work will focus on applying the proposed
method to the pulp neutralization process in [29].
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